Morphological variations and depositional processes of microforaminiferal linings in the early Tertiary sediments of northeastern and northwestern India

PRIYANKA MONGA¹, MADHAV KUMAR¹ AND YOGESH JOSHI²

¹Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. ²Department of Botany, S.S.J. Campus, Almora, Kumaun University, Nainital, India.

*Corresponding author: priyankamongapu@gmail.com

(Received 06 August, 2015; revised version accepted 19 October, 2015)

ABSTRACT

Monga P, Kumar M & Joshi Y 2015. Morphological variations and depositional processes of microforaminiferal linings in the early Palaeogene subsurface of Upper Assam and lignite bearing sedimentary succession in the Cambay Basin, India, their morphology and depositional environments. The number of chambers and size of the linings categorize them into various morphological groups, viz. Uniserial type II, Biserial type II, Planispiral type II, Planispiral type III, Planispiral type IV, Trochospiral type I and Trochospiral type II of which two morphotypes, namely Planispiral type II and Trochospiral Type I are most common in the palynoassemblages. The study on microforaminiferal linings will delineate marine and terrestrial realms in the sequences where other palynoforms are not recovered and may facilitate better interpretation of the depositional environment. Morphological attributes of various microforaminiferal linings along with other palynomorphs, viz. spores, pollen grains, dinoflagellate cysts and fungal fruiting bodies indicate near shore, marine shelf depositional conditions of the studied sections.

Key–words—Microforaminiferal linings, Morphology, Palaeoenvironment, early Palaeogene, India.

© Birbal Sahni Institute of Palaeobotany, India
INTRODUCTION

SEDIMENTARY successions of subsurface horizons of Assam and Cambay basins yield a variety of fossil fuels, mineral reserves with well preserved palynoassemblages, along with microforaminiferal linings. The organic linings mostly derived from benthic foraminifera (Tyson, 1995) can be considered as a reliable indicator of depositional setups of marine shelf, shallow or slope conditions (Lister & Batten, 1988; Courtinat, 1989; Stancliffe, 1989; Courtinat & Meon, 1991; Oboh, 1992a, b), although they may be abundant in the estuarine marshes of variable salinities (Farr, 1989; Batten, 1996). The linings represent inner organic remains of the calcareous tests, whose outer tests usually dissolve during their burial in the sediments (Mc Neil, 1997; Tibert et al., 2003; de Vernal, 2009; Fhlaithearta et al., 2013; Concheyro et al., 2014). The taxonomy and application of microforaminiferal linings for studying biostratigraphy and palaeoecology have been highlighted by Stancliffe (1989) with reference to the British Oxfordian sediments. The generic and specific level assignment of microforaminiferal linings based on the formal classification of foraminifera is not possible except for their morphological categorization (Stancliffe, 1989). These linings are common not only in carbonates (Traverse & Ginsberg, 1966), but also in the clastic shelf sediments deposited in warm, shallow marine nutrient upwelling areas that are not generally affected by terrestrial inputs (Cross et al., 1966; van Waveren, 1989; Powell et al., 1990).

The study on morphological and depositional aspects of microforaminiferal linings has not been focused earlier in detail. The present study documents its distribution in various facies types of both the basins and may fill a gap of knowledge on its morphological diversities. The use of these linings in stratigraphical and palaeoecological interpretation can provide a definitive evidence of marine and terrestrial constituents of the sediments deposited along the coastal zones.

STRATIGRAPHIC SETTINGS

Bihpuria Well–A (lat. 27°00′–27°20′ N: long. 93°45′–93°15′ E) is situated in the north of Subansiri and Brahmaputra rivers in North Lakhimpur District of Assam lying near the state border of Assam and Arunachal Pradesh (Fig. 1). The studied early Tertiary subsurface sediments of Upper Assam Basin are not categorized into various formations and considered as parts of the undivided Sylhet Limestone Formation because of the thinness of sediments in Upper Assam shelf in the districts of Lakhimpur and Dhemaji. Early Tertiary sediments occurring in the entire Upper Assam Basin are much significant for their hydrocarbon reserves (Bharali et al., 1999). These sediments occur beneath the surface around Bihpuria in North Lakhimpur District with indistinct lithology in the sedimentary successions between 4444 to 4300 m depth above the Precambrian basement (Kumar & Borgohain, 2005). The equivalent sediments comprising of Langpar, Lakadong Limestone, Lakadong Sandstone (Danian to Thanetian), Umlatdoh Limestone, Nurpuh Sandstone and Prang Limestone (early Eocene) followed by Kopili (late Eocene) of Jaintia Group in Meghalaya (Raja Rao, 1981; GSI, 1989) are lithologically distinct and their thickness is much greater than those occurring in Upper Assam Basin. The equivalent Mikir Formation (early Eocene) occurs at many places in Nagaon, Karbi–Anglong, Golaghat and Jorhat districts of Assam. The upper horizons, e.g. Tipam (Miocene) and Namsang (Pliocene) formations are not considered in this study due to the lack of microforaminiferal linings.

The Surkha Lignite Mine (21°26′43″–21°42′00″ N: 72°07′30″–72°16′30″ E) is situated in Bhavnagar District. The mining area lies in Cambay Basin, an intracratonic, north–south trending rift sedimentary basin in the Bhavnagar, Bharuch and Surat districts of Gujarat. The deposition of sediments in the basin started during the late Mesozoic with the development of major tensional faults following widespread extrusion of the Deccan trap basalt. The Deccan traps cover a major portion of Saurashtra peninsula and form basement for the development of Tertiary and Quaternary sediments in the basin. The Tertiary sediments comprise of greywacks, dark grey to black grey shales, lignite, silts, fine to medium grained sands and grey reddish–brown clays (Bhandari & Choudhary, 1975). Stratigraphically, rocks and sedimentary sequences of the basin are categorized into eight formations (viz. Vagadkhol, Cambay Shale, Ankleshwar, Tadkeshwar, Babaguru, Kand, Jhagadia, Narmada with Deccan traps) as the basement is overlain by the Cambay Shale Formation (Agraval, 1986). The sediments show a thickness of about 200–300 m and contain various types of plant microfossils (spores, pollen grains, dinoflagellate cysts, sedimentary organic matter, etc.), along with megafloral and faunal remains, including foraminiferal linings.

MATERIAL AND METHODS

The palynomorphs recovered from subsurface Bihpuria Well–A, Assam and Surkha lignite section, Gujarat, contain well preserved microforaminiferal linings with different morphological features. The foraminiferal organic linings were recovered with other palynomorphs after chemical processing of these sediments. Standard maceration techniques were followed for extraction of palynomorphs and other organic particles (Brown, 1960; Batten & Morrison, 1983). For extraction of microforaminiferal linings and other palynological materials approximately 25–30 g of each sample was crushed, kept in plastic jars and treated with dilute hydrochloric acid for 18–20 hours followed by 40 % hydrofluoric acid for 4–5 days for dissolving silica. Thereafter, dilute nitric acid (20–25%) was added for digesting humic materials followed by treatment with 1–2% aqueous KOH solution. These macerated residues were mixed with a few
drops of polyvinyl alcohol, smeared uniformly over the cover glass. The cover glass dried in an oven for about 30 minutes was then mounted in Canada balsam. The prepared slides were kept in an oven for drying at approx. 70ºC. Slides prepared from productive samples were examined under the light microscope for qualitative and quantitative analysis of the palynomorphs. Slides used for the present study are housed in the Repository of the Birbal Sahni Institute of Palaeobotany, Lucknow for further reference.

Fig. 1—Location of the study areas (★) in (A) northeastern and (B) northwestern India.
AGE OF THE SEDIMENTARY SUCCESSIONS

Age of the sedimentary successions is determined on the basis of dinoflagellate cysts and angiospermic pollen grains. The organic linings are found in marine influenced deposition of the Lakadong Sandstone Formation (late Palaeocene), Mikir Formation (early Eocene) of Jaintia Group of Upper Assam and Cambay Shale Formation (early Eocene) of Cambay Basin, Gujarat. Dinoflagellate cysts, viz. Apectodinium homomorphum, Homotryblium spp., Operculodinium sp., Cordosphaeridium sp. and pollen grains of Lanagiopollis sp., Proxapertites emendatus, Neocouperipollis kutchensis and Perforotricolpites neyvelii, etc. recorded from the basal part of Bihpuria Well–A (Sylhet Limestone Formation) suggest late Palaeocene to early Eocene age (Kumar & Borgohain, 2005).

The Cambay shale sediments exposed at Surkha Lignite Mine have been assigned to early Eocene age due to the occurrence of dinoflagellate cysts of Homotryblium spp., Cordosphaeridium fibrospinosum, etc. that can be correlated with the middle part of the Vastan lignite succession, Cambay Basin (Garg et al., 2008). Some significant pollen grains, e.g. Matanomadhiasulcites maximus, Palmaepollenites nadhamunii, Arengapollenites ovatus and Retipollenites enigmata recorded from Surkha Lignite Mine also show their presence in Naredi Formation (early Eocene) of Kutch (Kar, 1985) and Cambay Shale Formation of Rajpardi and Vastan (Kar & Bhattacharya, 1992; Kumar, 1996; Samant & Phadtare, 1997; Rao et al., 2013).

MICROFORAMINIFERAL LININGS

Microforaminiferal linings, a term coined by Wilson and Hoffmeister (1952) applies to the acid resistant foraminiferal remains (less than 150 µm in size), found in the palynological preparations (Pl. 1). It is the inner organic layer produced mainly by the calcareous and agglutinated benthic foraminifera (de Vernal, 2009). The composition of the linings is of chitin derivatives, proteins and polysaccharides but some may have even of lignin compounds (Fhlaithearta et al., 2013). The natural dissolution or breakage of calcareous microforaminiferal tests results in liberation of their organic linings (Wetzel, 1957; Golubić & Schneider, 1979; Mc Neil, 1997) which maintain more or less internal test morphology of the original foraminifers (Concheyro et al., 2014) as shown in Fig. 2. The inner surface of agglutinated foraminiferal test bound with organic cement is extremely tolerant of the acidic conditions of salt marshes, organic sediments of estuaries and bays, and shows high preservation potential (Tibert et al., 2003).

Foraminiferal skeletons or tests are built of chambers, which have cavities containing the cytoplasm with a surrounding firm wall. Adjacent chambers are separated by septa but a connection between septa is maintained by a hole or foramen (Culver, 1993). The first chamber is centrally developed called proloculus (Fig. 2, 2–3b) which is commonly thicker than other succeeding chambers, while the second chamber is usually smaller than the proloculus. There is
rarely a visible connection with the second chamber. The size of other succeeding chambers gradually increases. The last or terminal chamber of few microforaminiferal linings appears to be larger than others and is thin walled (Fig. 2, 2–3a). Morphologically, the foraminiferal linings occur as uniserial, biserial and coiled forms (Pl. 1). The uniserial forms have centrally located neck, whereas biserial linings exhibit thickenings at an angle to the direction of the growth of lining. The neck development is not common in coiled forms, however, if neck is present they can be centrally located on the wall or on the side of the chamber nearest to the proloculus. The external wall surface of the microforaminiferal linings can be smooth, granular or bearing short spinules.

CATEGORIZATION OF FORAMINIFERAL LININGS INTO VARIOUS GROUPS

Various palynologists proposed two classification systems for microforaminiferal linings, namely (i) informal and (ii) formal. The formal system of classification of foraminiferal linings into Sphaeromorphitae and Disphaeromorphitae groups was proposed by Göczén (1962) with five coiled types from the Cretaceous rocks of Hungary. However, Macko (1963) and Deak (1964) proposed generic and specific names for microforaminiferal linings recovered from the Cretaceous and Eocene sediments. Tappen and Loeblich (1965) rejected formal system of the classification and stated that the additional “form species” and “form genera” of foraminiferal linings add burden to the foraminiferal taxonomy. Stancliffе (1989) described an informal classification for microforaminiferal linings; this has been adopted for the present study. The classification includes the description of overall chamber relationship, chamber overlapping, neck development and length to breadth changes (Table 1). Six main types of microforaminiferal linings encountered in the palynological assemblages of both the regions are: Uniserial type II, Biserial type II, Planispiral type II, Planispiral type III, Planispiral type IV, Trochospiral type I and Trochospiral type II, however, the dominant forms are coiled ones with Planispiral as well as Trochospiral types. The quantification of chamber from proloculus to the larger chambers is based on the measurement of length to breadth. A maximum and minimum measurement is recorded for the clearly visible proloculus in all the specimens. The measurement of the first chamber (proloculus) to last preserved chamber indicates good growth rate of the lining in most of the specimens (Stancliffе, 1989) are observed (Pl. 1; Fig. 3). Sometimes linings are affected by bacterial attacks or mechanical processes resulting in pitting or dissolution of outer organic layers. The biogenic (Bajpai et al., 2001) or abiogenic (Berner, 1985; Mc Neil, 1997) pyrites are also observed in the chamber walls (Pl. 1.10–11).

DISTRIBUTION OF FORAMINIFERAL LININGS AND OTHER PALYNOMORPHS

The late Palaeocene sediments between 4444–4440 m depth of Bihpuria Well—A comprising of laminated clay and shale (Fig. 3A) exhibit less frequency of microforaminiferal linings (5%) as compared to the dinoflagellate cysts (5–10%), viz. *Apectodinium homomorphum*, *Cordosphaeridium* sp., *Oerculodinium* sp. and *Spiniferites* sp. Pollen grains, namely *Neocouperipollis kutchensis*, *Matanomadhiasulcites maximus*, *Proxapertites medundatus*, *Palmidites plicatus*, *Triporopollenites* sp., *Perforotricolpites neyvelii*, *Lakiapollis ovatus*, *Tricolporopollis rubra* and spores of *Dandotiaspora dilata*, *D. telenota*, *Lycoptidiumsporites* *speciosus* and *Polyopodiaceaesporites* sp. abundantly occur in the sediments. The overlying early Eocene strata between the depth 4440–4386 m comprising of shale and clay, fine siliceous shale contains abundant microforaminiferal linings (10–18%). Dinoflagellate cysts ranging from 60% to 30% towards the top are represented by *Homotryblium tenuispinosum*, *Homotryblium abbreviatum*, *Cordosphaeridium fibrospinosum*, *C. robustum*, *C. exilimurum*, *Oerculodinium israelianum* and *Oerculodinium* sp., etc. The pollen grains (25–35%) observed in this interval are: *Palmopollinoceras nadhamunii*, *Matanomadhiasulcites maximus*, *Palmidites plicatus*, *Arecipites bellus*, *Proxapertites microreticulatus*, *Longapertites vaneedenburgi*, *Lakiapollis matanomadhensis*, *Striapolpites cephalus*, *Rhoipites kutchensis* and pteridophytic spores (5–6%) of *Polyopodiaceaesporites levis*, *Dandotiaspora telenota*, *Dandotiaspora plicata*, *Lycoptidiumsporites pachyexinus* and *Acrostichumsporites meghalayaensis*. Occurrence of rich amorphous organic matter in this interval exhibits anoxic condition (Kumar & Borgohain, 2005), which favoured dissolution of test and preservation of organic contents of microforaminifera. No microforaminiferal linings are recorded in post Kopili (Tipam and Namsang) sediments because of the poor incursion of brackish water due to gradual shallowing of the basin during late Eocene onwards.

The basal strata of Surkha Lignite Mine with lignite and carbonaceous shale partings exhibit 2–5% microforaminiferal linings and no dinoflagellate cysts (Fig. 3B). The lignite contains rich spores of families Matoniaceae (*Dandotiaspora telonata*), Polyopodiaceae (*Polyopodiaceaesporites repanidis*) and pollen grains of Areaceae (*Palmidites plicatus*, *Palmopollinoceras kutchensis*, *Longapertites vaneedenburgi*, etc.), along with fungal fruiting bodies of *Monoporisporites circularis*, *M. ovaliformis*, etc. Occurrences of a few microforaminiferal linings in lignite indicate less marine influence during the deposition. But upper sequences comprising of shale, carbonaceous shale, cross bedding rippled mudstones and muddy matrices represent 2–3% of microforaminiferal linings with rich dinoflagellate cysts of *Homotryblium* sp., *Cordosphaeridium fibrospinosum*, etc. The spores of the families Matoniaceae (*Dandotiaspora telonata*), *Pteridaceae*
Types Morphology

Uniserial type II (Pl. 1.1) The chambers of the lining are appressed without development of distinct necks. The connection between each chamber is marked by the thickening of the wall.
Dimensions (one specimen):
Number of the chambers: 3, first chamber: 41 × 27 µm, second chamber: 44 × 47 µm, last chamber: 55 × 27 µm; overall size: 146 µm

Planispiral type II (Pl. 1.3–9) The chambers of the planispiral type II overlaps with each other with varying degree. In most of the Planispiral type II observed, the final chambers are wide with respect to the direction of growth.
Dimensions (nine specimens):
Number of the chambers: 5–9, first chamber: 13–22 × 11–25 µm, second chamber: 11–22 × 11–27 µm, last chamber: 30–68 × 19–50 µm; overall size: 55–125 µm

Planispiral type III (Pl. 1.10–11) It is characterized by non–overlapping of the chambers which are wide with respect to their length. The second whorl of the chambers is not oppressed to the first one.
Dimensions (two specimens):
Number of the chambers: 10–13; first chamber: 12–13 × 12–13 µm; second chamber: 12–16 × 11 µm; last chamber: 41–47 × 33–44 µm; overall size: 97–111 µm

Planispiral type IV (Pl. 1.12) Chambers do not overlap each other and are wider with respect to their length. Chambers after the completion of the first whorl touches those of the secondary whorl.
Dimensions (one specimen):
Number of the chambers: 12; first chamber: 16 × 19 µm; second chamber: 13 × 11 µm; last chamber: 50 × 55 µm; overall size: 125 × 139 µm

Trochospiral type I (Pl. 1.13–16) It is characterized by distinct overlapping of the adjacent chambers, larger chambers have proximal connections with the succeeding and preceeding chambers. Maximum two numbers of whorls are recorded. The chambers of the second whorl are dark brown in colour while outer chambers are comparatively thin walled and translucent. Chamber’s surface ornamentation varies from smooth to granular.
Dimensions (four specimens):
The number of the chambers: 10–15; first chamber: 11–19 × 8–13 µm; second chamber: 11–16 × 8–13 µm; last chamber: 39–72 × 27–41 µm, overall size: 103–111 µm

Trochospiral type II (Pl. 1.17) It has discrete chambers in primary whorl and chambers of the second whorl overlap chambers of the first whorl.
Dimensions (one specimen):
Number of the chambers: 13; first chamber: 13 × 13 µm; second chamber: 11 × 8 µm; last chamber: 69 × 55 µm; overall size: 123 µm

Table 1—Various types of microforaminiferal linings (according to Stancliffe, 1989) observed in both the sections.

DEPOSITIONAL PROCESSES AND PALAEOECOLOGY

Foraminifera have been successful inhabitants of every aquatic environment from deep oceans to brackish water lagoons, estuaries and rarely in freshwater streams, lakes, etc. (Gandhi & Solai, 2010). The acidic pH condition of marine facies causes dissolution of calcareous foraminifers; such conditions also favour decay of organic remains by aerobic and anaerobic bacteria under reducing condition (McNeil, 1997). Under such circumstances production of carbon dioxide and carbonic acids (H₂CO₃) may lead dissolution of calcareous foraminifers (Golubić & Schneider, 1979).
Bradford (1977) suggested that distribution of linings in marine sediments is comparable to the occurrence of benthic foraminifera deposited in shallower condition with high salinity and high summer temperatures. Batten (1982) demonstrated that microforaminiferal linings frequency increases in marine facies associated with rich amorphous organic matter. The linings are mostly recorded with dinoflagellate cysts in the sediments deposited along the coasts (Warrington, 1982; Davies, 1985; Kumaran & Rajshekhar, 1992; Singh et al., 2013). Based on the abundance of microforaminiferal linings as well as dinoflagellate cysts, the marine influenced depositions are identified in both the studied sections. Warrington (1982) noted an inverse relationship between microforaminiferal linings and dinoflagellate cysts. In the present study of Surkha Lignite Mine section frequency of linings decreases with increase in dinoflagellate cysts, whereas the case is reverse in Bihpuria–Well A of Assam. But some strata of Surkha Lignite Mine represent
CONCLUSIONS

1. Microforaminiferal linings provide means of reconstructing nature of the marine influenced depositional set ups. Abundant microforaminiferal linings with varied morphology were observed in subsurface Bihpuria Well–A, Assam and Surkha lignite section, Gujarat. Six main morphotypes recovered in the section were Uniserial type II, Planispiral type II, Planispiral type III, Planispiral type IV, Trochospiral type I, Trochospiral type II of which Planispiral type II and Trochospiral type I were found in abundance.

2. The palaeoenvironment of linings, along with dinoflagellate cysts signifies that such deposition took place in low lying shallow marginal marine conditions. The marine incursion was more constant in Bihpuria Well–A, Assam than Surkha lignite section, Gujarat.

3. The occurrence of foraminiferal linings in the pollen spore dominated assemblages indicates that vegetal matter was deposited adjacent to the ancient shoreline.

4. The varied taphonomic processes and variabilities in environmental setups might have affected distribution of the benthic foraminifera resulting in an increase or decrease in the frequency of linings.

5. Occurrence of pyrite in the chambers indicates burial under anoxic condition produced by the activity of aerobic and sulphur reducing anaerobic bacteria. Such conditions favour preservation of Uniserial type linings.

Acknowledgements—Authors are grateful to the Director, Birbal Sahni Institute of Palaeobotany, Lucknow for providing infrastructure facilities and permission (no. BSIP/RPCC/40–2015–16) for publication of this article. Sincere gratitude are also expressed to the General Manager, GMDC, Gujarat for permission to collect samples from Surkha Lignite Mine, Bhavnagar and M/s Oil India Limited, Duliajan, Assam for providing samples and geological data of Bihpuria Well–A, Assam.

REFERENCES

Gandhi MS & Solai A 2010. Statistical studies and ecology of benthic
foraminifera from the depositional environment: A case study between
Mandapam and Tuticorin, South East Coast of India. JRRAS 5: 86–94.
Garg RK, Khowaja–Ateequzzaman, Prasad V, Tripathi SKM, Singh IB, Jauhari
AK & Bajpai S 2008. Age–diagnostic dinoflagellate cysts from the lignite–
bearing sediments of the Vastan lignite mine, Surat District, Gujarat,
Geological Survey of India 1989. Recent Advances in the Study of Tertiary
Stratigraphy of Northeast India–A Critical Resume. Geological Survey of
India, Special Publication 23: 1–22.
Jber. Für Annual Report of the Hungarian Geological Institute of 1959:
181–209.
Swaine DJ (Editors)—Biogeochemical Cycling of Mineral–Forming
Elements, Studies in Environmental Science, Elsevier Scientific
Kaczmarska I & Ehrman JM 1990. Pyritized diatoms in the sediments at
the distal end of the Bengal Fan. In: Cochran JR, Stow DAV, Auroux C,
Amano K, Balsom PS et al. (Editors)—Proceedings of the Ocean Drilling
Palaeobotanist 34: 1–280.
Basin, Gujarat Dam and Akri Lignite, Kutch Basin. Palaeobotanist 39:
250–263.
Kumar M 1996. Palynostratigraphy and palaeoecology of Early Eocene
palynoflora of Rajpardi Lignite, Bharuch District, Gujarat. Palaeobotanist
43: 110–121.
Kumar M & Borgohain R 2005. Palynofacies Analysis and Depositional
environment of Bhupuria Well–A, North Bank of Brahmaputra River,
Kumaran KPN & Rajshekhar C 1992. Foraminiferal linings from Late
Cretaceous coal–bearing strata: a paleoecological approach using
agglutinated foraminifera and ostracodes to detect key stratigraphic
surfaces. In: Olson H & Leckie RM (Editors) —Micropaleontologic
proxies for Sea Level Change and Stratigraphic Discontinuities (Society
Traverse A & Ginsberg RN 1966. Palynology of the surface sediments of
Great Bahama Bank, as related to water movement and sedimentation.
van Waveren IM 1989. Pattern analysis of organic component abundances
from deltaic and open marine deposits: palynofacies distribution (East
Warrington G 1982. Palynology of cores from the basai Lias and the Permian
(‘?)–Triassic sequence of the Winterborne Kingston borehole, Dorset. In:
Rys GH, Lott GK & Cleaver MA (Editors)—The Winterborne Kingston
81: 122–126.
Wetzel O 1957. Fossil ‘microforaminifera’ in various sediments and their
reaction to acid treatment. Micropalaeontology 3: 61–64.
Wilson LR & Hoffmeister WS 1952. Small foraminifera. The