Occurrence of *Anonidium*-like pollen in the Tura Formation (Palaeocene) of Meghalaya, India

K. AMBWANI AND R.K. KAR

Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India.

(Received 19 April 2000; revised version accepted 5 June 2000)

ABSTRACT


*Anonidium*-like pollen of the family Annonaceae was recovered from the Nangwalbibra section of Tura Formation (Palaeocene), Meghalaya. LM and SEM studies of living and fossil pollen reveal that they are closely similar in apertural disposition and ornamentation pattern. *Anonidium* is confined to West Africa at present. The probable route of migration of this genus to India from elsewhere is discussed.

Key-words—*Anonidium* pollen, Annonaceae, Palaeocene, Meghalaya, India.

INTRODUCTION


© Birbal Sahni Institute of Palaeobotany, India
Matanomadhasulcites maximus Kar (1985), cf. Liliacidites sp. B Muller et al. (1987), Proxapertites maracaiboensis Muller et al. (1987), Periretivesyncolpites nigericus Sonuga (1987), Proxapertites cf. pars van Hoenken-Klinkenberg (1964), Matanomadhasulcites sp. Venkatachala et al. (1989), etc. Kar (1985) & Venkatachala et al. (1989) placed some of the above mentioned species under Matanomadhasulcites maximus Kar (1985) as they have oval-elliptical shape, monosulcate aperture and reticulate-reticulaculate ornamentation. This species is found commonly in the Palaeocene sediments of Meghalaya and Kutch. Besides this species some other forms of annonaceous pollen were also recovered from the Nangwalbibra section, Garo Hills, Meghalaya. These pollen are described here. The slides were deposited at the repository of the Birbal Sahni Institute of Palaeobotany, Lucknow.

GEOLGY

The Nangwalbibra section belongs to the Tura Formation, which comes under the Jaintia Group. According to Sah and Singh (1974) there are three coal seams that alternate with white-grey shale or kaolinitic clay. A coarse grained white clayey sandstone with thin pebble band generally occurs at the base. The annonaceous pollen were recovered from the middle coal seam, which is the thickest seam in the locality.

Sah and Singh (1974) worked out the palynology of this seam and placed it in the Dandotiaspora telonata Cenozone. The characteristic palynofossils of this cenozone are: Dandotiaspora telonata, D. pseudoreticulata, D. plicata, Polycrinites speciosus, P. cooksoniae, Lycopodiumsporites palaeocenicus, Proxapertites microreticulatus, Matanomadhasulcites maximus, Retitribrevicolporites matanomadensis, Tricolpites levis, Neocosperipollis rarispinosus, N. brevispinosus, etc. The assemblage indicates a Late Palaeocene age.

Some annonaceous pollen which were not recorded by Sah and Singh (1974) were isolated and studied under LM and SEM. The pollen of various extant species of Annonaceae were also studied in LM and SEM to determine whether any of them shows similarity to the fossil ones. It was observed that the pollen of Anonidium mannii Engl. and Diels closely resembles the fossil pollen in monosulcate nature, bilateral symmetry and reticulate ornamentation (Pl. 1, Figs 1-6). The meshes in both are flat and broad due to complete fusion of the columellae. The polliniferous material of A. mannii was kindly supplied by Dr. C. Caratini, French Institute, Pondicherry.

DISCUSSION

The presence of Anonidium-like pollen in the Tura Formation of Garo Hills, Meghalaya poses many problems. This genus at present is mostly confined to the western parts of Africa. According to Doyle et al. (1979) pollen grains similar to Annonaceae are present in the pre-Albian sediments of Gabon, which shows its existence in the region since its presumed inception. If the cradle of the Annonaceae was in western Africa, then Anonidium would have to come to India during the Palaeocene. However, the Cretaceous palynological assemblages of West Africa are more similar to those of South America than those of India. The juxtaposition of the two

PLATE 1

2. Anonidium mannii showing monosulcate, reticulate pattern. x 1000 (LM).
3. Fossil monosulcate pollen showing distal ornamentation. x 1200 (SEM), (bar = 100 μm).
4. Anonidium mannii showing distal reticulation. x 1600 (SEM), (bar = 100 μm).
5, 6. A. mannii showing monosulcate nature. x 1200 (SEM), (bar = 100 μm).
7, 8. Exine reticulation enlarged to show lumina and muri in fossil pollen. x 4000 and 8000 (SEM), (bar = 10 μm).
9, 10. Exine reticulation enlarged to show lumina and muri in extant pollen. x 4000 and 8000 (SEM), (bar = 10 μm).
continents in the Cretaceous time also would have assisted in mutual migration. [Doyle et al. (1976), Wolfe et al. (1975), Doyle (1977, 1978), Hickey and Doyle (1977) and Dilcher (1979)]. The work of Jardine et al. (1975), Herngreen (1975), Brenner (1976) and Doyle et al. (1977) confirms this observation.

Takhtajan (1969) however, considered that southeast Asia was the centre of origin of the Annonaceae. Smith (1973) also supported this view. Walker (1971), on the basis of palynological investigation, suggested that the Amazon basin of South America could be the original homeland of Annonaceae though he did not rule out the possibility of African origin. Raven and Axelrod (1974) and Schuster (1976) emphasized a West Gondwana origin of Annonaceae.

A southeast Asian origin of Annonaceae seems to be doubtful because fossil pollen similar to Annonaceae are known from the Barremian-Aptian in Africa and South America. In India, however, the earliest record of ananaceous pollen comes from the Early Palaeocene (Kar, 1992). So the migration route seems to have been eastward from West Africa. Besides ananaceous pollen, Venkatachala et al. (1989) observed that Retistephanocolpites williamsii, Spinozonocolpites spp., Cienophodnoides costatus, Tricofilites reticulatus, Strycholophites cuphalus, Neocouuperipollis spp., Proxaperites spp., Anokolodites luteoides, Marginipollis spp. and Margocolpites spp. were common to both Africa and India during the Tertiary Period. Kar (1992) reported spores assignable to Acrostichum from the Palaeocene of Meghalaya. Similar spores were reported by Caratini et al. (1991) from the Palaeocene of Senegal.

The shared presence of these common forms can only be explained if the ancestors of these plants were already in existence in different continents before the continental drift.

Acknowledgements—One of the authors (R.K. Kar) thanks the Department of Science and Technology, New Delhi for granting a project entitled “Deccan Intertropical palynoflora and its implication for the demarcation of K/T boundary” (ESS/CA/A4-16/90) during the tenure of which the present work was done. We appreciate Prof. Anshu K. Sinha, Director, Birbal Sahni Institute of Palaeobotany, Lucknow for providing the infrastructural facilities and encouragement in the preparation of this manuscript. The authors thank C. Caratini, French Institute, Pondicherry for supplying the living material.

REFERENCES

Axelrod DI 1974. Plate tectonics in relation to the history of angiosperm vegetation in India. In: Lakanpal RN (Editor)—Symposium on origin and phylogrenography of angiosperms : 5-18, Birbal Sahni Institute of Palaeobotany, Lucknow.


