Occurrence of a solenoporoid alga in the Deccan Intertrappean beds of Mohgaonkalan, Chhindwara District, Madhya Pradesh

R. C. Mehrotra

A fossil red alga Solenopora Dybowski of Solenoporaceae has been described for the first time from the Deccan Intertrappean beds of Mohgaonkalan, Chhindwara District, Madhya Pradesh. Its occurrence supports the presence of marine conditions in this area during the Early Tertiary period.

Key-words—Solenopora, Red alga, Deccan Intertrappean beds, Early Tertiary (India).

R. C. Mehrotra, Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India.

A NUMBER of algal remains, known from various Deccan Intertrappean localities, have been listed by Prakash (1960) and Lakhanpal (1973). Majority of them belongs to Charophytes. In addition, some more algal forms in the last decade have been described by several other workers (Shivarudrappa, 1972a, 1972b, 1977, 1981; Bhatia & Mannikeri, 1976; Biradar, 1977; Bande, Prakash & Bonde, 1981; Barlinge & Paradkar, 1982; Marathe, Barlinge & Paradkar, 1984; Mishra & Maithy, 1984; Trivedi, Baijap & Trivedi, 1985). Two of them, Distichoplax raog Varma and Peyssonnelia antiqua Johnson, are important. The former is indicative of Palaeocene-Eocene age while the later indicates marine conditions.

SYSTEMATIC DESCRIPTION

Family—Solenoporaceae

Genus—Solenopora Dybowski 1878

Solenopora sp.

Pl. 1, figs 1-6

Material—While studying the slides of the chert material, several algal specimens almost similar in structure but differing in thickness of the thallus were discovered. Three of them have been selected for the present study.

Description—The thalli are nodular and crustose ranging in thickness from 170-1200 µm (Pl. 1, figs 1, 2, 6). The thallus is undifferentiated into hypothallus and perithallus and in vertical section the tissue is occurring as vertical files or tubules of more or less rectangular cells, with prominent vertical walls (Pl. 1, figs 3, 4, 6). Sometimes, cells appear variously shaped due to poor preservation. Their size varies from about 17-120 µm in length and 13-95 µm in width. Septa are present in the tubules but at irregular intervals (Pl. 1, fig. 5). Reproductive structures are absent.

DISCUSSION

The family Solenoporaceae is an extinct group of fossil marine organisms, nodular or encrusting in habit and formed internally of closely packed
radially or vertically divergent rows of elongate cells. Occasionally referred to various animal groups, they are usually interpreted as calcareous algae related to the living Corallinaceae, which resemble closely in growth form and general internal structure. The thallus is undifferentiated into hypothallus and perithallus and the cell diameters are almost always greater than those of corallines. In Solenoporaceae, though the vegetative tissue is similar to that of the corallines, reproductive structures are relatively uncommon and almost doubtful and obscure except in Neosolenopora (Elliott, 1965). The family consists of four valid taxa, viz., Solenomertis, Parachaetetes, Solenopora and Neosolenopora. They are classified almost entirely on the types of cellular tissue. The important aspects considered are: (i) presence or absence of filament partitions (horizontal cell walls), (ii) regular or irregular spacing of partitions, and (iii) shape of cells in cross section (Wray, 1977).

Solenomertis is characterized by a marked irregularity in its cellular tissue. In vertical section individual cells appear to be irregular in shape, because cell partitions alternate in position with adjacent filaments giving a zig zag effect in Parachaetetes, filaments have well-defined, regularly spaced partitions between cells, which give the tissue a grid-like pattern in vertical section (Wray, 1977). There is no regularity in the occurrence of septum in the fossil, therefore, it may be either Solenopora or Neosolenopora. As the reproductive structures are very common in the latter, a Miocene genus, the present fossil has been kept under the genus Solenopora which was instituted by Dybowski in 1878 (Elliott, 1973; Flăgă, 1977).

The geologic range of Solenoporaceae is from Lower Palaeozoic to mid-Tertiary (Elliott, 1973). So far five species of Solenopora have been described from various parts of the country. These are Solenopora hookeri from the Upper Permian of North Sikim (Oakley, 1941), S. jurassica as well as S. coramondalensis from the Jurassic of Cullygoody Limestone, Trichinopoly, Tamil Nadu (Narayana Rao, 1946), and S. sahnii and S. tiruchienis from the Cretaceous of Trichinopoly, Tamil Nadu (Rama Rao & Gowda, 1954). However, due to poor preservation the present fossil could not be compared with the above species. Therefore, under the circumstances, it has been described as Solenopora sp. Besides, Parachaetetes asvapatli from the Ninijur (Upper Cretaceous) Group of Trichinopoly, Tamil Nadu (Rama Rao & Pia, 1936), Solenomertis (? douvillei) from the Lower Eocene (Laki) rocks of Nanmol Gorge, Salt Range (Narayana Rao & Varma, 1953) and Neosolenopora ramaraoi from the Miocene of Limestone Hut Bay Formation of Andaman Island (Gururaja, 1977) are also known from India.

The ecological distribution of the family Solenoporaceae is largely comparable to some modern coralline algae. The sedimentological record indicates that it occupied open-marine environments of normal salinities (Wray, 1977). The family Solenoporaceae has been described here for the first time from the Deccan Intertrappean beds of India. Based on the presence of fossils of coastal plants like Cocos, Nipa and Sonneretia from the Deccan Intertrappean beds of Mohgaonkalan in Chhindwara District, Lakhnapan (1970, 1974) has already envisaged the presence of an arm of Tethys sea in Central India during this period. A few years later, Bande, Prakash and Bonde (1981) described two marine red algal forms, Peyssonnelia and Distichoplax, from the same beds. Thus obviously the present finding of Solenopora of Solenoporaceae from the same beds gives further support to this theory.

ACKNOWLEDGEMENTS

The author is grateful to Dr M. N. Gururaja, Senior Geologist, Geological Survey of India, Hyderabad for his valuable suggestions for the identification of fossil alga. Thanks are also due to Dr B. S. Venkatachala, Director, Birbal Sahni Institute of Palaeobotany, Lucknow for useful discussion and constant encouragement throughout the progress of this work.

PLATE 1

1. Solenopora sp.—Section of chert in low power showing nature of thallus. x 15; Slide no. BSIP 35940 I.
2. Solenopora sp.—Section of chert in low power showing nature of another thallus. x 9; Slide no. BSIP 35940 II.
3. Solenopora sp.—Vertical section of thallus (shown in fig. 2) in high power showing nature of filaments. x 45; Slide no. BSIP 35940 II.
4. Solenopora sp.—Vertical section of thallus (shown in fig. 1) in high power showing nature of filaments. x 90; Slide no. BSIP 35940 I.
5. Solenopora sp.—Magnified view of thallus (fig. 4) showing nature of cells. x 175; Slide no. BSIP 35940 I.
6. Solenopora sp.—Vertical section of another thallus in high power showing nature of filaments. x 40; Slide no. BSIP 35940 III.
REFERENCES

sonnelia and Distichoplax in the Deccan Intertrappeans, with
remarks on the age of Chhindwara traps and palaeogeography

and fungal forms from the Deccan Intertrappean of Mohgaon-

Bharia, S. B. & Mannikeri, M. S. 1976. Some Charophyta from the
Deccan Intertrappean beds near Nagpur, Central India.
Geophylogy 6(1): 75-81.

Biradar, N. V. 1977. On the occurrence of cyanophycean member,
Westielopsis in the Deccan Intertrappean Series, M.P., India.
Geophylogy 7(2): 204-207.

Elliot, G. H. 1965. Tertiary solenoporacean algae and the repro·
ductive structures of the Solenoporeae. Palaeontology 7
(4): 695-702.

Elliot, G. H. 1973. A Miocene solenoporoid alga showing

Flueg, E. 1977 Fossil algae, recent results and developments.

Gururaja, M. N. 1977 A solenoporeid alga from Miocene of

Lakhpanal, R. N. 1970. Tertiary florae of India and their bearing on
the historical geology of the region. Taxon 19(5): 675-694.

in: Symp. on Deccan Trap Country. Indian National Science
Academy, New Delhi: 127-155.

Lakhpanal, R. N. 1974. Physical conditions of the Indian Tertiary in
Surange et al (eds)—Aspects and appraisal of Indian
palaeobotany. Birbal Sahni Institute of Palaeobotany,
Lucknow.

Marathe, K., Barlinge, S. G. & Paradkar, S. 1984. On the importance
of Frischshella intertrappea sp. nov. from the Deccan Intertrappean
cherts of the Deccan MohgaonKalan, Chhindwara District, M.P., India, in: Symp. on Evolutionary
Botany and biostratigraphy, Prof. A. K. Ghosh Comm.
Vol. 83 88.

remains from the Deccan Intertrappean beds, Madhya

Narayan Rao, S. R. 1946. On two species of Solenopora from the
Cullughodo limestone of Trichinopoly District, South India.

Range. Palaeobotanist 2: 19-23.

Oakley, K. P. 1941 Upper Palaeozoic flora of north Sikkim.

India. J. Palaeontol. 34 (5): 1027-1040.

Rama Rao, L. & Gowda, S. S. 1954. Solenoporaceae from the

Rama Rao, L. & Pia, J. 1930. Fossil algae from the uppermost
Cretaceous beds (Ninyur Group) of the Trichinopoly
District, South India. Mem. geol. Surv. India Palaeont. indica

Shivarudrappa, T. V. 1972a. On Gyrogonties medcaginula and
Chara wrighid from the Intereppaneas of Gurmatkal,
Gulbarga District, Mysore State. Proc. II Colloq. Indian
Micropaleont. stratigr. : 115-119.

Shivarudrappa, T. V. 1973. The occurrence of charophytic
remains from the Intertrappeans of Gurmatkal, Gulbarga

Shivarudrappa, T. V. 1977. First report of fossil charophytes from
the Intertrappean sediments of Birilli, Bijapur District, Karkataka State. Proc. IV Colloq. Indian
Micropalaeont. stratigr.: 196-200.

Shivarudrappa, T. V. 1981. Charophytic remains of the Deccan
Intertrappeans—a case study from Gurmatkal locality,
Gulbarga District, Karkataka, India, in: Symp. on Deccan
volcanism and related basalt provinces in other parts of the

cyanoiphycean fossil alga from the Deccan Intertrappean beds
of MohgaonKalan, Chhindwara District (M.P., India). J. Indian
bot. Soc. 64: 393-394.

Wray, J. L. 1977. Calcareous algae: Development in palaeon·
tology and stratigraphy. 4, Elsevier Scient. Publ. Co.,
Amsterdam: 1-185.