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ABSTRACT

Doyle JA 2001. Significance of molecular phylogenetic analyses for paleobotanical investigations on
the origin of angiosperms. Palaeobotanist 50(2 & 3): 167-188.

Molecular phylogenetic analyses have provided increasing evidence that angiosperms are not related to
Gnetales, thus contradicting the anthophyte hypothesis based on morphological cladistic analyses and
throwing the question of angiosperm relatives back to paleobotanists. Previous analyses of gene sequences
based on a molecular clock conflicted with the fossil record in indicating a Late Paleozoic or Triassic origin
of the angiospenns. but closer examination suggests that these dates were biased by the use of herbaceous
taxa with accelerated rates of molecular evolution. Despite uncertainty on angiosperm relatives, analyses of
many genes consistently place Amborella, Nymphaeales, Auslrobaileya, Trimenia and Illiciales (the' ANITA
grade') at the base of extant angiosperms, possibly followed by ChJoranthaceae. Molecular phylogenies
imply that the first crown-group angiosperms had columellar exine structure, suggesting that Hauterivian­
Barremian reticulate-columellar monosulcates may be closer to the origin of angiosperms than was thought
when granular Magnoliales were believed to be basal. Hauterivian pollen with a verrucate tectum and
microspinules is especially similar to Amborella. The ANITA lines and ChJoranthaceae have ascidiate carpels
sealed by secretion and often exotestal seeds, fitting the abundance of such carpels and seeds in Barremian­
Aptian mesofloras. Similarities between Aptian angiosperm leaves and ANITA taxa, such as chloranthoid
teeth and variable stomatal structure, also suggest that Early Cretaceous angiosperms were more primitive
than previously appreciated. Molecular results may help refine search images for extinct angiosperm relatives,
away from Gnetales and toward groups such as Caylonia, glossopterids, Bennettitales and corystosperms.
Since molecular data place the vesselless taxa Amborella and Nymphaeales at the base of the angiosperms,
the presence of vessels is not evidence that gigantopterids are related to angiosperms. The conclusion that
columellar structure is ancestral reaffirms the potential of Triassic reticulate-columellar Crinopolles pollen
as angiosperm relatives.

Key-words-Angiosperms, Paleobotany, Cretaceous, Phylogeny, Molecular systematics.
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INTRODUCTION

Over the past 40 years, paleobotanical studies of
Cretaceous fossils, first pollen and leaves, more recently
flowers, fruits and seeds in the 'mesofossil' record have
provided many indications on the course of early angiosperm
evolution, for example supporting the view that 'magnoliids'
include the most primitive living angiosperms and
'Amentiferae' are advanced (Crane et al., 1995; Doyle, 1969,
1978; Doyle & Hickey, 1976; Friis & Crepet, 1987; Friis et al.,
2000; Hickey & Doyle, 1977; Muller, 1970; Upchurch, 1984;
Wolfe et al., 1975). These studies have provided no direct
evidence on links between angiosperms and other seed plants,
but beginning in the 1980s cladistic analyses of morphological
data from living and fossil seed plants appeared to narrow the
range of viable hypotheses on this problem, indicating that
seed plants and angiospenns are both monophyletic groups
and focusing attention on Gnetales, Bennettitales,
glossopterids, Caytonia and other 'Mesozoic seed ferns' as
possible angiosperm relatives (Crane, 1985; Doyle &
Donoghue, 1986; Loconte & Stevenson, 1990; Nixon et al.,
1994; Rothwell & Serbet, 1994; Doyle, 1996, 1998b).

In the past 10 years, cladistic analyses of molecular data,
of necessity restricted to living plants, have provided a vast
and completely independent body of evidence on these
questions. Although these studies cannot directly address the
relationships of fossil taxa to the angiosperms, they do bear
on competing hypotheses when these make different
predictions on relationships among living taxa. As an observer
of both fields, I have been struck not only by conflicts between
the two lines of evidence, which have perhaps attracted more
attention (Axsmith et al., 1998; Doyle, 1998a; Goremykin et
al., 1996), but also by unexpected agreements, and by ways in
which insights from one field may suggest new directions for
research in the other. This paper will explore both the conflicts
and agreements, considering four closely interrelated
questions: what the angiosperms came from, when they
originated, what the first angiosperms were like, and how
answers to the last question may shed light on the first. I will
discuss these questions in a cladistic framework, which allows
us to generate and test phylogenetic hypotheses in a coherent,
explicit fashion.

'-
./

Fig I-Representative most parsimonious trees from morphological cladistic analyses of seed plants; (a) Nixon el at (1994). (b) Doyle (1996). Extant lines
are indicated in black, extinct lines in white.
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SEED PLANT PHYLOGENY AND THE
ORIGIN OF ANGIOSPERMS

The first question, what the angiospenns came from, can
be addressed cladistically by asking how angiospenns are
related to other seed plants - what are their closest outgroups
- and examining character states shared by these outgroups.
This is a case in which most molecular data conflict with
morphological cladistic analyses of living and fossil seed
plants. Whereas before the application of cladistics there was
little agreement on this topic, cladistic analyses all associated
angiospenns with Mesozoic Bennettitales and living Gnetales,
in a clade called the anthophytes, although they did disagree
on just how these groups were related and what other taxa
they were related to. Previously, it was widely thought that
Gnetales had nothing to do with angiospenns and were instead
related to conifers and other coniferophytes (Bailey, 1949;
Doyle, 1978; Eames, 1952). The first major analysis, by Crane
(1985), identified Gnetales as the sister group of angiosperms,
Bennettitales and Pentoxylon as the second outgroup, and
corystosperms, Caytonia and glossopterids as outgroups of
the anthophytes. The trees of Doyle and Donoghue (1986)
differed in placing angiosperms at the base of the anthophytes,
somewhat further from Gnetales. Two of the most divergent
results are shown in Fig. 1. In trees of Nixon et al. (1994),
anthophytes were related to conifers rather than to Mesozoic
seed ferns and angiosperms were actually nested within
Gnetales (Fig. la). In my own latest analysis (Doyle, 1996),
Caytonia was directly linked with angiosperms, but Gnetales
were still their closest living relatives (Fig. 1b). As discussed
in Doyle (1994), trees of these different types have very
different implications for origin of the angiosperm bitegmic
ovule and the carpel. Those that associate anthophytes with
Caytonia or glossopterids suggest that the angiosperm outer
integument is derived from a cupule, whereas those that
associate anthophytes with conifers suggest it is homologous
with the perianth of Gnetales and derived from scale leaves
on an axillary fertile short shoot of the type seen in cordaites
and early conifers.

Although molecular analyses cannot shed light on the
relationships of angiosperms to Bennettitales, Caytonia and
other fossils, they can address the relationship between
angiosperms and Gnetales: are these groups related at all, and
if so, are they monophyletic sister groups, or are angiosperms
nested within Gnetales? Early molecular analyses indicated
that angiosperms and Gnetales are both monophyletic (Fig.
2), with strong statistical support as measured by bootstrap
analysis (Felsenstein. 1985), refuting the view that angiospenns
are nested in Gnetales. However, they gave inconsistent results
on relationships of the two groups. Some analyses of rDNA
indicated that they are sister groups (Hamby & Zimmer, 1992;
Stefanovic et al., 1998; Fig. 2a), but this result was weakly
supported. Other analyses of rDNA (Hamby & Zimmer, 1992)

and the chloroplast gene rbcL (Albert et al .. 1994) placed
Gnetales at the base of seed plants, with angiosperms linked
with cycads, Ginkgo and conifers (Fig. 2b), or else reversed
Gnetales and angiospenns (Hasebe et al., 1992; Fig. 2c). These
variations are a function of rooting - where outgroups attach
to the seed plant tree; otherwise, the three trees are the same.
There is reason to expect that the rooting of seed plants should
be difficult: the conifer, cycad and ginkgo lines extend back to
the middle Late Carboniferous or the Permian and presumably
split not long before and there has been a long time since then
for convergences and reversals on the lines leading to living
seed plants, resulting in so-called long-branch attraction
(Donoghue & Sanderson, 1992; Doyle, 1998a; Felsenstein.
1978). However, in trees first seen in analyses of chloroplast
ITS sequences (Goremykin el al., 1996) and 18S rDNA (Chaw
et al., 1997), angiosperms are basal in seed plants and Gnetales
are linked with conifers (Fig. 2d). With this type of tree, there
is no way to reroot seed plants such that angiosperms and
Gnetales are related.

In all these studies, bootstrap support for relationships
among seed plants was relatively low, so it seemed possible to
argue that the morphological evidence for the anthophyte
hypothesis could still be accepted (Doyle, 1998a). However,
this situation has changed since 1998: many studies based both
on single genes and on several genes combined have indicated
that Gnetales are more closely related to conifers than to
angiosperms, with much higher bootstrap support (Bowe el
al., 2000; Chaw et al., 2000; Frohlich & Parker, 2000; Hansen
et al., 1999; Qiu et al., 1999; Samigullin el al., 1999; Winter
et al., 1999). In fact, the multigene analyses ofQiu et al. (1999),
Bowe et al. (2000) and Chaw el al. (2000) actually nested
Gnetales within conifers, linked with Pinaceae (Fig. 2e), with
most critical nodes supported by bootstrap values of90-1 00%.
The main variation is that 18S rDNA alone indicates fairly
strongly that Gnetales are the sister group of conifers rather
than nested within them (Bowe el al., 2000; Chaw et al., 1997),
as does the fact that conifers are united by loss of one copy of
the large inverted repeat in the chloroplast genome, whereas
Gnetales retain both copies (Raubeson & Jansen, 1992). In
any case, all these studies are unequivocal in rejecting a
relationship between Gnetales and angiosperms (Donoghue
& Doyle, 2000). These results are consistent with
morphological similarities between Gnetales and conifers cited
in pre-cladistic studies. such as linear leaves, lack of
scalariform pitting in the primary xylem. circular-bordered
pits with tori in the secondary xylem, and compound strobili
made up of axillary fertile short shoots (Bailey, 1949; Carlquist,
1996; Doyle, 1978; Eames, 1952), which were outnumbered
by anthophyte similarities in morphological cladistic analyses.

These results are not definitive, since other recent studies
have produced trees in which Gnetales are the sister group of
other living seed plants (Fig. 2b). Sanderson et al. (2000) found
trees of this sort in parsimony analyses of the chloroplast genes
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Fig. 2-Seed plant relationships found in analyses of molecular data.

psaA and psbB. However, they obtained divergent results when
they analyzed different nucleotide positions in each codon:
Gnetales nested in conifers based on first and second codon
positions, but Gnetales basal in seed plants based on third
positions. Since third positions evolve more rapidly, there is
reason to suspect that the latter result may be due to long­
branch attraction. Consistent with this view, Sanderson et al.

found Gnetales nested in conifers when they analyzed third
posit~ons of psaA with maximum likelihood, which is believed
to counteract long-branch attraction. Combined analyses of
17 chloroplast genes (Rai et al., 2001) also gave trees with
Gnetales basal, but again some subsets of the data and methods
of analysis placed Gnetales in conifers. Rydin et al. (2002)
found trees with Gnetales basal when they analyzed rbcL and
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arpB (another chloroplast gene) and these genes combined
with 18S and 26S rDNA. However, analysis of rbeL and alpB
with exclusion of nucleotide transitions (which are more
common than transversions and therefore more likely to cause
long-branch attraction) gave trees with Gnetales nested in
conifers. Combined analyses of 18S and 26S linked
angiosperms with Gnetales (like some earlier rDNA analyses),
but with low support.

Despite these uncertainties, the continued failure of
molecular data to support the anthophyte hypothesis suggests
that paleobotanists should begin to consider the implications
of alternative trees. Trees that link Gneta1es with conifers may
deserve more attention than those with Gnetales basal, since
they are more consistent with the conifer-like morphological
features of Gnetales and harder to ascribe to long-branch
attraction.

Most molecular studies that associate Gnetales with
conifers are disconcerting in indicating that living
gymnosperms are monophyletic. as the sister group of
angiosperms (although this result is not strongly supported ­
trees with cycads basal or on the line to angiosperms are often
almost as parsimonious). Since conifers extend back to the
Late Carboniferous, this implies that the line leading to
angiosperms goes back this far too - an apparent conflict with
the stratigraphic record (Axsmith el at., 1998; Doyle, 1998a).
However, this result does not mean that angiosperms and
gymnosperms evolved separately from progymnosperms, or
that angiosperms originated in the Paleozoic. Since these trees
include only living taxa, there could be any number of early
seed ferns attached below the split of angiosperms from other
living groups, and any number of Permian and Mesozoic fossils
attached to the stem lineage leading to angiosperms. This point
is illustrated by the tree in Fig. 3a, obtained by analyzing the
data set of Doyle (1996) with living gymnosperms constrained
to form a clade and Gnetales forced into conifers, and allowing
fossils. shown in white, to attach wherever is most
parsimonious. The Jurassic fossil Piroeoniles, previously
linked with Gnetales, was removed because TEM studies
indicate that its supposedly ephedroid exine structure was
misinterpreted (Osborn, 2000); this had no effect on
unconstrained trees. Late Devonian and Carboniferous seed
ferns (Elkinsia through CallislophylOlZ) still diverge at the base
of the tree, and glossopterids, Penroxylon, Bennettitales (in
some trees) and Caylonia are still associated with angiosperms.
Fig. 3b shows a tree from a similarly constrained analysis of
the data set of Nixon el al. (1994); glossopterids and Cayrollia
are not associated with angiosperms. but Bennettitales are.

Whereas the anthophyte hypothesis suggested thaI
studies of living Gnetales might shed light on the origin of
angiosperm features such as double fertilization and endosperm
(Friedman, 1992, 1994), molecular results imply that any
progress in reconstructing the origin of angiosperms must
come from paleobotany. Unfortunately, this task now looks
more difficult than it formerly did, since morphological data
and methods appear to have given dramatically incorrect
results in the case of Gnetales. Before new analyses can be
undertaken, we need a complete reappraisal of methods,
particularly the way we analyze morphological characters, to
understand why previous analyses went so wrong, and
whether this could have been avoided. Several characters that
seemed to associate angiosperms and Gnetales differ in detail
in the two taxa (Donoghue & Doyle, 2000). For example, the
tunica in the apical meristem consists of two cell layers in
angiosperms but only one in Gnetales; the megaspore wall is
thin in Gnetales but completely absent in angiosperms; and
double fertilization in Gnetales produces two zygotes, not a
zygote and a triploid endosperm nucleus (see references in
Doyle, 1996; Doyle & Donoghue, 1986). Another character,
granular exine structure, is discussed below. Although in all
these cases the gnetalian state could be ancestral to the
angiosperm one, the differences could equally well be evidence
of convergence. We may also need new data on Mesozoic
fossils - either new taxa or new data on characters of known
taxa, such as seed cuticles (stressed by Harris, J954 but
generally neglected since then) and stem anatomy. We should
also face the possibility that the number of morphological
character states in seed plants is too small and the probability
for homoplasy during their long evolutionary history too high
for reliable cladistic inference ('character state exhaustion':
Wagner, 2000), perhaps requiring discovery of new fossils
and/or integration of stratigraphic data into phylogenetic
analyses. However, molecular data do give indirect indications
about groups that need more attention in the search for
angiosperm relatives: not Gnetales and related fossils, but
rather Bennettitales, Caylonia, glossopterids, coryslosperms,
and more poorly known 'seed ferns' in Triassic and Jurassic
floras (cf. Anderson & Anderson, 1997).

AGE OF THE ANGIOSPERMS

The second question, when the angiosperms originated.
is another case in which fossil and molecular data appear to
conflict. Here it is important to distinguish two ages (Doyle &
Donoghue, 1993): the time when the stem lineage leading to

"/'
Fig 3-Representative trees based on the data sets of (a) Doyle (I (96) and (b) Nixon et al. (1994), with extant gymnosperms and angiosperms constrained

illlo a sister group relationship and Gnelales forced into conifers with Pinaceae. as in recent molecular analyses (Fig. 2e). Extant lines are indicated
in black. extinct lines in while.
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angiosperms separated from the line to their closest living
relatives, and the age of the most recent common ancestor of
all living angiosperms, or the crown group. As discussed above,
trees of the types in Figs 2c-e imply that the stem lineages of
living gymnosperms and angiosperms split in the
Carboniferous, but this does not mean that the angiosperm
crown group is this old; it could have originated much more
recently, and one could argue that the large number of
apomorphies separating angiosperms from other groups would
take a long time to accumulate. However, the molecular dates
being considered here relate specifically to the age of the crown
group.

Of course, the age of the angiosperms has also been a
topic of controversy in paleobotany. Until the 1960s, many
paleobotanists assumed that angiosperms originated long
before the Cretaceous, based in large part on identifications
of Cretaceous fossils (mostly leaves) with diverse and
advanced extant taxa (Axelrod, 1952, 1970). However, this
view was challenged by palynological studies, which showed
that Early Cretaceous angiosperm pollen was less diverse and
more primitive than expected, and that the order of appearance
of pollen types agreed with the sequence of evolution inferred
from studies of modern plants - monosulcate, as in magnoliids
and monocots; tricolpate, the basic type for what are now called
eudicots; tricolporate; and finally triporate (Doyle, 1969, 1978;
Muller, 1970, 1981). Closer examination of the leaf record and
discoveries of fossil flowers and fruits showed a similar pattern
of rapid but orderly morphological diversification (Crane ef

ai., 1995; Doyle & Donoghue, 1993; Doyle & Hickey, 1976;
Friis & Crepet, 1987; Friis ef ai., 1994b; Hickey & Doyle, 1977;
Upchurch, 1984). Barremian-Aptian mesofossil floras show
surprisingly high species diversity, but they do not contradict
the picture of low initial advancement (Friis ef ai., 2000). At
present, the oldest definite angiosperm fossils are reticulate
monosulcate pollen grains from the Valanginian or Hauterivian
(ca. 135 Ma; Brenner, 1996; Hughes, 1994; Trevisan, 1988); a
supposedly Jurassic record from China (Archaefructus: Sun
ef ai., 1998) has been redated as Barremian-Aptian (Barratt,
2000; Swisher ef ai., 1999). These data suggest that
angiosperms may have originated not long before their
appearance in the fossil record, although they do not rule out
the existence of older angiosperms if these were rare and
plesiomorphic.

Molecular studies on this question have used the concept
of a molecular clock, which assumes that gene sequences
diverge at a statistically constant rate, to date splits between
living groups. This requires at least one calibration point, a
split either inside or outside the group that can be dated with
the fossit record. Using the gene gapC and a rate of molecular
evolution inferred from animals, Martin ef ai. (1989) dated
the angiosperms, represented by two grasses and seven dicots,
as 319 Ma, or mid-Carboniferous. At that time, the most
advanced known seed plants were seed ferns more primitive
than any living gymnosperms, to say nothing of angiosperms.

Martin et ai. took this result as support for the views of Axelrod
(1952, 1970) and dismissed the concept of a Cretaceous origin
as based on negative evidence. However, Crane ef ai. (1989a)
argued that the conflict with the fossil record is not so easy to
explain away. In particular, Martin ef ai. dated the common
ancestor of eudicots as 276 Ma (Permian), but eudicots (whIch
are strongly supported as a monophyletic group: Chase ef al.,

1993; Qiu et ai., 1999; Soltis ef ai., 1999) are united by
tricolpate pollen, which has a dense fossil record, appearing
in the late Barremian (Doyle, 1992; Hughes, 1994; Hughes &
McDougall, 1990) and becoming ubiquitous in the Albian.
Martin ef ai. (1989) did not use any calibration from the plant
fossil record, but Martin ef ai. (1993) corrected this deficiency
in a study of gapC and rbcL, which assumed that liverworts
split from other land plants at 450 Ma (Late Ordovician); this
gave an age of 300 Ma, again Carboniferous. However,
younger (though still pre-Cretaceous) ages were found by
Wolfe ef ai. (1989) and Laroche ef ai. (1995) - 200 Ma, or
Early Jurassic - and by Goremykin ef al. (1997), based on 58
chloroplast genes - 160 Ma, or Late Jurassic.

Analyses by Sanderson and Doyle (200 I) suggest that
these dates were biased upward by several factors, especially
the fact that molecular evolution is not clocklike and the use
of angiosperm taxa with higher than average rates. In addition,
previous analyses assumed equal rates across DNA sites (which
is known to be incorrect); correcting for this by use of a gamma
distribution of rates gives angiosperm ages that are 20-30 Ma
younger. Sanderson and Doyle (2001) used rbcL sequences
from a larger number of taxa, chosen to span the base of the
angiosperms and other important nodes. Fig. 4 shows one of
their trees plotted against geologic time, calibrated with the
divergence of Marchanfia at 450 Ma, with branch lengths
adjusted by a maximum-likelihood program to make molecular
evolution as clocklike as possible, and using a gamma
distribution. As in other analyses of rbcL, Gnetales were basal
in seed plants. The estimated age of the angiosperms was 139
Ma, or earliest Cretaceous, close to their first appearance in
the fossil record.

A problem with this analysis is that the seed plant
relationships in Fig. 4 conflict with other data (as summarized
above). Surprisingly, this has little effect on age estimates for
angiosperms. When angiosperms and Gnetales were
constrained to form a clade, as in the anthophyte hypothesis,
the inferred age of angiosperms was 143 Ma, only 4 Ma from
that in the previous tree, and the same age was found when
Gnetales were forced together with conifers.

These results suggest that ages based on rbcL may be
more compatible with the fossil record than has been thought.
However, ages using the same methods based on 18S rDNA
(Sanderson & Doyle, 2001) were still substantially older,
varyi ng around 180-190 Ma (depend ing on seed plant
relationships), or Early Jurassic.
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consistent with the fossil record, evolution was clearly not
clocklike across the tree. In some cases, this gave ages that
are too young. Fig. 4 indicates that cycads, Ginkgo and
conifers split in the Late Jurassic (152 Ma), whereas in fact

Fig. 4-Seed plant tree based on I'vcL, with LycopodiulII forced to the base of vascular plants and conifers forced into a clade, plotted against the
geologic time scale, with ages estimated from I'vcL by maximum likelihood under the assumption of a molecular clock (Sanderson &
Doyle, 200 I).

Closer examination of the rbcL data suaaests reasons
00

why previous analyses gave older ages, while warning that
the problems are far from solved. Although the ages of
angiosperms obtained by Sanderson and Doyle (2001) are
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they go back twice as far, to the Late Carboniferous or Permian.
The reasons for this anomaly are clearer in Fig. 5, the same tree
presented as a phylogram, with branch lengths proportional
to the amount of molecular evolution. Cycads, Ginkgo and
conifers are unusually short branches; apparently, in pulling
the tips of these branches up to the same level as other groups,
the likelihood program pulled up their common ancestor too.
Some ages within angiosperms are also too young: the split
between Nelumbo and Platanus was dated as 48 Ma, but the
lines leading to both groups are known back to the Albian,
100-110 Ma. In contrast, other branches within angiosperms
are unusually long-Ory;:a, Pinun and Nicotiana, all advanced
herbaceous taxa. The fact that rates are higher in grasses was
already noted by Bousquet et al. (1992) and Gaut et al. (1992).
It happens that earlier clock studies were based largely on
such cultivated plants. When Sanderson and Doyle (2001)
used Oryza, Pinun and Nicotiana as the only angiosperms in
their rbcL data set, the estimated age of the group almost
doubled - to 253 Ma, or Late Permian.

Sanderson and Doyle (2001) found that age estimates
also vary depending on codon positions, with third positions
of rbcL actually giving angiosperm ages that are too young
(Late Cretaceous), and first and second positions giving older
ages than the whole sequence. Several previous studies
(including Martin et al., 1989, 1993) analyzed amino acid
sequences or nonsynonymous substitutions, which involve
mostly changes at first and second positions. When Sanderson
and Doyle (2001) used Oryza, Pisum and Nicotiana as the
only angiosperms on a tree with Gnetales linked with conifers
and analyzed only first and second positions of rbcL, they
obtained a date of 281 Ma, approaching the 300-320 Ma ages
of Martin et al. (1989, 1993). Thus, taxon sampling and codon
positions effects go far toward explaining the older ages
obtained in previous studies. However, this does not indicate
which estimates are more nearly correct.

The conflicting ages derived from different genes and
the clear inequalities in evolutionary rate among lineages
suggest that better understanding of factors influencing rates
of molecular evolution and/or development of new methods
that deal with unequal rates might reconcile fossil and
molecular ages. Unfortunately, the most popular method
proposed so far, nonparametric rate smoothing (NPRS;
Sanderson, 1997), yields rbcL ages for angiosperms that are
considerably older than ages based on a clock (Doyle et al.,
2001), actuall y aggravati ng the confl ict. This could mean either
that the fossil record is more incomplete than clock-based
estimates imply, or that rates of molecular evolution change
abruptly rather than gradually (as assumed by NPRS), so that
NPRS is even less appropriate than the clock method. These
problems should be a topic of continued dialogue between
paleobotanists and molecular evolutionists.

MOLECULAR PHYLOGENIES AND
CRETACEOUS ANGIOSPERMS

While molecular data suggest we know less about the
outgroups and the age of the angiosperms than we thought.
they have greatly clarified the third question - what the first
angiosperms were like. In cladistic terms, this is a function of
rooting of the angiosperm tree, which depends on character
states in the outgroups. In the period of morphological
cladistics, it seemed that this problem might not be solved
without clear identification of angiosperm outgroups. For
example, Donoghue and Doyle (1989) rooted the angiosperms
with a hypothetical ancestor based on the seed plant analysis
of Doyle and Donoghue (1986). This indicated that
Magnoliales were basal in angiosperms, as a result of granular
exine structure and other states that they share with
Bennettitales and Gnetales, the supposed closest outgroups
of angiosperms. In contrast, in trees of Nixon et al. (1994:
Fig. la), in which angiosperms were nested in Gnetales,
Chloranthaceae were basal, consistent with their opposite
leaves, simple flowers and orthotropous ovules. all gnetalian
features. In trees of Doyle (1996; Fig. 1b), in which Caytollia
was the sister group of angiosperms, Nymphaeales were basal.

In contrast, molecular analyses have converged
remarkably on similar rootings of the angiosperms, despite
the uncertainties on outgroup relationships discussed above.
The main exception was the first large analysis, using rbcL
(Chase et al., I993), which placed the aquatic genus
Ceratophyllum at the base of the angiosperms. The first signs
of the present picture came from studies of nuclear rRNA
(Doyle et al., 1994; Hamby & Zimmer, 1992) and chloroplast
rDNA ITS sequences (Goremykin et aI., 1996), which
indicated that Nymphaeales were basal. More recent multigene
studies have kept Nymphaeales near the base while adding
several other taxa around them. The data used included various
combinations of rbcL and atpS from the chloroplast, 18S
rDNA from the nucleus, and five mitochondrial genes
(Barkman et aI., 2000; Parkinson et al., 1999; Qiu el aI., 1999;
Soltis et al., 1998, 1999,2000); duplicated phytochrome genes
(Mathews & Donoghue, 1999); and 17 chloroplast genes
(Graham & Olmstead, 2000). In most of these studies, the
first branch was Amborella, a vessel less shrub from New
Caledonia formerly placed in Laurales; the second was
Nymphaeales; and the third was a clade consisting of Illiciaies
and two Australasian lianas, Austrobaileya and Trimenia
(placed in their own families). These lines were called the
'ANITA grade' by Qiu et al. (1999). The main uncertainty
concerns the exact relationship of Amborella and
Nymphaeales. Their placement as successive branches has low
bootstrap support and is sensitive to taxon sampling (Graham
& Olmstead, 2000; Qiu et al., 2000), and analyses using the
RASA method, designed to counteract long-branch attraction,
unite Amborella and Nymphaeales as a basal clade (Barkman
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Fig. 5-Tree in Fig. 4 presented as a phylogram,
with branch lengths proponional to the
amount of molecular evolution (Sander­
son & Doyle, 2001).

et aL., 2000; contrary to these authors, this has only minor
effects on inferred ancestral states). Above the ANITA grade,
there are eight major clades, all of which have high bootstrap
support, but whose mutual relationships are not completely
reSOlved. Thus, even though living gymnosperms are very
distant from angiosperms and their arrangement is uncertain,
they appear to provide a strong molecular signal for rooting
the angiosperms.

These molecular trees show striking parallels with the
Cretaceous fossil record. This point can be illustrated by
plotting characters on the tree in Fig. 6, from a study by Doyle
and Endress (2000), who combined a new morphological data
set with rbcL, atpB and 18S sequences and specified
AmboreLla as the outgroup to other taxa. This 'combined' tree
resembles molecular trees in most respects, except in a few
places where molecular support was weak. For example, it



178 THE PALAEOBOTANIST

lnfrateetum

ordered

c:=J granular
_ lntermed
_ colume11ar

~ equivocal

9 steps

rbcL + atpB + 18S
+ morphology

NYM ITR CHL EUn ICOT MON PIP MRG W LRURRLES
j II l~j II II II l~l I

41
IV 41 0

41 41 ~ %41 ~ 41 ~ 41 41 41
IV ~ QIIV IV Q1~QIQ1 ~ 41 IV IV 41 IV IV~
41 %0 IV~~ ~ 41 ~ oo~~~ Q1'~ %~Q1Q1~E EIV~ % ~~
~ QIIV Q1~~ E C IVQI~ ~IVOO~ QI IV EQI % IV Q101V1V1V~1V~Q1·- Q1Q1~~

~ 0 IV 0 ~ ~ .;v:s IV ~ 41 41 41 ~ IV IV f: IV ~ IV IV IV ~ 0 ~ 41 .~ .~.~ 0 IV 41 ~:S E 1:7' 0. ~.g IV ~ lV.g 0.
Q1%~ IVc~'-~ccEIV~o20~1V~Q1~~tQl~~ ~1V~~~0-E~.~.20lVc~Q1~c~._oQl~~

M~~M&COIV'-~Q10~-IVQI~ 0.~0 IV~~~ ~ ._~IVIV·-Q1-_~~1V -O~Q1C'_OCIV
~ ~....4 IV E ~.~ 41 ~ ~ ~ 0 o.c E ~ 41 > Q1'~ ~ 41 C g 41 ~ E ~ ~ ~ ~ 0 0 C E:; C 0 ~:::l 41 0 e; ~ ~ ~.S 0 E IV IV 0
~ E ~ ~~ E .2 ,~ V; ~ ~ -6' ~ g~ - '0 ;r 0'.~ 'c of ~ ~ ~ ~ ~ ~ 41 5,~ ~ 1> g ~;fl ~ ~ '[ ~ c ~ ,g ~ 1: 1V:::l 1: 'c 5 E E
E ~ IV ~ IV o:::l ~ ~.c ~ 41 ~ ~ 41 ~ ~ IV ~ IV 41 41 IV ,g ~ 0 ~ o.~ IV ~ ~ IV C ~ IV 41 IV ~ IV'- IV ~ 0 _ ,~ 0 0 0 IV 41 ~
<ZmZu~~~<u<~m~Z~~~w~Em~c<~m<~~«~<w~cEEu3u~~<~E~E~~~.0.0........................ ....0000..... .... .00
'~I------

Fig. 6- Single tree found in the combined analysis of Doyle and Endress (2000). based on morphology, rbcL. alpB and 18S rONA, showing the
inferred evolution of exine srructure. CHL = Chloranthaceae. MAG = Magnoliales. W = Winlerales. PIP = Piperales, NYM = Nymphaeales.
MON = monOCOIS.

links monocots with Piperales (sensu APG, 1998, including
Aristolochiaceae and Lacloris), Winterales with Magnoliales
rather than Piperales and Lauraceae with Hernandiaceae rather
than Monimiaceae (Monimioideae, Hortonia,
Mollinedioideae).

Perhaps most interesting is the case of Chloranthaceae,
which have occupied several positions in molecular trees, but
which morphology helps to place immediately above the
ANITA grade. This near-basal position is consistent with the
abundance of apparent fossil relatives of Chloranthaceae in
the Early Cretaceous, such as the Clavalipolleniles and
ASleropollis pollen groups (Couper, 1958; Muller, 1981;
Walker &'Walker, 1984), flowers and fruits associated with
these pollen types (Eklund et al., 1997; Friis el al., 1986,
1994b, 1999; Pedersen el ai" 1991), and probably some of
the leaves with chloranthbid teeth discussed below, Some
Barremian-Aptian fossils (Friis el al., 1994b, figs 3c-f; Friis

el al., I997a, fig. 6.3) appear to be related to the livi ng genus
Hedyosmum: both groups have pollen with a branched sulcus
(Asleropollis in the dispersed pollen record) and three tepals
fused to the carpel, indicating that the crown group of
Chloranthaceae had evolved by this time. Tripartite androecia
related to Chloranthus are di verse in the Late Cretaceous, and
a more problematic example (because of the anomalous
orientation of the anthers) is known from the Albian (Crane et
al., 1989b; Eklund el al., 1997; Friis el al., 1986; Herendeen
et al., 1993).

The new molecular rooting is also significant in
suggesting that the earliest Cretaceous angiosperms may be
closer to the origin of the clade than previous phylogenetic
views implied. A prime example concerns exine structure. The
oldest generally accepted angiosperm pollen grains, from the
Valanginian of Italy (Trevisan, 1988), the Valanginian­
Hauterivian of Israel (Brenner, 1996) and the Hauterivian of
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Fig. 7-Tree from the combined analysis of Doyk Endress (2000). showing the inferred evolution of carpel form

England (Hughes, 1994; Hughes & McDougall, 1987; Hughes
et al., 1991), are monosulcates and inaperturates with reticulate
sculpture and columellar exine structure. It has been argued
that the plants producing this pollen were already advanced
relative to Magnoliales with smooth pollen and granular exine
structure (Muller, 1970; Van Campo & Lugardon, 1973;
Walker, 1976; Walker & Walker, 1984; Ward et al., 1989),
and this view seemed to be supported by the basal position of
Magnoliales in the cladistic analysis of Donoghue and Doyle
(1989) Such pollen would be hard to distinguish from that of
Bennettitales without TEM study, and it could extend back
much earlier without being recognized. However, molecular
trees (Fig. 6) indicate that granular structure is actually derived
in angiosperms, since Magnoliales and other granular taxa are
nested within the group, not basal. The inferred ancestral
structure, retained in some Nymphaeales (Cabombaceae.
Barclaya), had irregular columellae overlain by a continuous
tectum; this was called intermediate by Doyle and Endress

(2000) but columellar by Osborn et al. (1991). Typical columellar
structure originated at the third node, along with a reticulate
tectum, resulting in pollen like that of Austrobaileya (Endress
& Honegger, 1980), which would be at home in the Hauterivian.
Hence there is no longer reason to assume a long period of
angiosperm evolution before the appearance of such pollen.

This conclusion holds all the more if Amborella is linked
with NymphaeaJes (Barkman et al., 2000), since under this
arrangement it is equally parsimonious to assume that either
tectate-intermediate or reticulate-columellar exines were
ancestral. The discovery by Friis et al. (200 I) of a Barremian­
Aptian flower similar to Nymphaeales but with reticulate­
columellar pollen may be evidence for the latter view.
However, even if the first angiosperm pollen was tectate, the
molecular results suggest that it might be more recognizable
than pollen of Magnoliales. Amborella has monosulcate pollen
with verrucate sculpture, small supratectal spinules and sparse,
irregular columellae (Hesse, 200 I; Sampson. 1993). Hughes
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Fig. 8-Tree from the combined analysis of Doyle and Endress (2000). showing the inferred evolution of exotestal structure.

and McDougall (1987) and Hughes (1994) described pollen
with almost identical sculpture from the Hauterivian of England
as HAUTERIVIAN-CACTISULC. It would be unwarranted
to identify this pollen as Amborella, but it does show that such
pollen existed and can be detected in the earliest angiosperm
record.

Other agreements between molecular trees and the
Cretaceous record concern carpel morphology. The classical
view (especially among American botanists) is that the original
carpel was plicate (conduplicate), like a leaf folded down the
middle, as in Degeneria and Winteraceae (Bailey & Swamy,
1951). However, molecular trees imply that the ancestral carpel
was ascidiate, as proposed by Leinfellner (1969) and van Heel
(1981). 'Both carpel types begin their development as a U­
shaped primordium. In the plicate type, the two arms of the
primordium grow up separately, but in the ascidiate type the
cross-zone between the arms becomes meristematic, and the
carpel grows up like a tube. At maturity ascidiate carpels are

typically barrel-shaped, with a sessile stigma, and they are
sealed by secretion rather than postgenital fusion of the margi ns
(Endress & Igersheim, 2000). The combined tree of Doyle
and Endress (2000) indicates that the ascidiate state was
ancestral and retained up to Chloranthaceae (Fig. 7). This
agrees with the fact that most carpels reported by Friis el at.
(1994b, 1999,2000) from the Barremian-Aptian of Portugal
appear to be ascidiate,judging from their shape, sessile stigma,
and lack of evidence for a ventral suture, including both those
associated with Chloranthaceae and others. At the fruit stage
most had one seed, like Amborella, Trimenia, Illicium, and
Chloranthaceae, but a few had several, like other ANITA taxa
(Nymphaeales, Austrobaileya, Schisandraceae). Friis el at.
(2000) suggested that both ascidiate and plicate carpels were
present, with the latter represented by follicular fruits, but
follicles were less common than berries, drupes, nuts and
achenes (Eriksson el at., 2000).
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Fig. 9-Tree from the combined analysis of Doyle and Endress (2000), showing the inferred evolution of leaf margin.

Another conspicuous feature of Barremian-Aptian
mesofloras is exotestal seed structure, in which cells of the
outer epidermis of the outer integument become thick-walled
(Friis et at., 1999, 2000). This feature is typical of
Nymphaeales, Trimenia and Illiciales. It is not inferred to be
ancestral on the cladogram in Fig. 8, since it is absent in
Amborella and Austrobaileya, but this may be a function of
the relict and specialized (autapomorphic) nature of living
ANITA taxa. Amborella is autapomorphic in having a hard
endocarp derived from the inner carpel wall, Austrobaileya in
haVing a fleshy sarcotesta derived from the mesophyll of the
outer integument. For functional reasons, origin of either
feature might be expected to entail h;)ss of a hard, protective
exotesta if this was present in the first angiosperms.

As stressed by Friis et at. (2000), Barremian-Aptian
mesofloras consist largely of taxa that cannot be associated
with anyone extant family (except for Chloranthaceae). Many
may therefore represent extinct lines on the stem lineages of

modem families or the internodes between them. However, as
the comparisons made here show, this does not prevent them
from contributing to formulation and testing of hypotheses on
basic states and character evolution in angiosperms, through
comparison with molecular phylogenies and improved data
on the distribution of morphological characters.

Similar leaf features are also found at the base of molecular
trees and in early angiosperms. An example mentioned above
is chloranthoid teeth (Hickey & Wolfe, 1975), with three veins
joining below a cap-like apical gland. These occur in modem
Chloranthaceae and Barremian-Aptian leaves, such as DBLT
no.1 of Upchurch (1984) from the lower Potomac Group
(Aptian?) and Moutonia spp. of Pons (1984) from the late
Barremian or Aptian of Colombia. However, as shown in Fig.
9, chloranthoid teeth are found not only in Chloranthaceae,
but also in several ANITA groups and basal eudicots (cf.
Hickey & Wolfe, 1975), and Fig. 9 implies that they are ancestral
for angiosperms.
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Lower Potomac leaves are also notable for their variable
stomata, which often vary from paracytic to laterocytic to
cyclocytic on the same leaf (Upchurch, 1984). Upchurch
suggested that this variation was primitive, like the irregular
('first rank ') venation of lower Potomac leaves (Doyle &
Hickey, 1976: Hickey & Doyle, 1977; Wolfe et al., 1975). In
surveying extant magnoliids. Upchurch (1984) found similar
variation in only a few taxa, notably Amborella, Austrobaileya,
Schisandra and Chloranthaceae. At the time, this list did not
seem particularly significant, but these taxa now stand out as
groups located near the base of molecular and combined trees.

The next phases of the angiosperm record also agree with
molecular phylogenies by showing new types that can be
related to several clades above the ANITA grade, often to
basal members of these clades. Among the oldest are
monoporate tetrads from the late Barremian of Gabon and the
Aptian-Albian of Israel, which resemble Winteraceae in the
tetrad habit and ring of endexine around the pore but appear
to be more primitive in having finer sculpture (Doyle, 2000;
Doyle eT al .. 1990a. b; Walker eT al., 1983).

Tricolpate pollen, which is diagnostic for the eudicot
clade, is first seen in the probable late Barremian of Gabon
and England (Doyle, 1992; Doyle eTal., 1977; Doyle & Hotton,
1991; Hughes, 1994; Hughes & McDougall, 1990), and it has
been found in stamens from the Barremian-Aptian of Portugal
(Friis eT aI., 1994b, 2000). The first tricolpates from Gabon
have irregularly arranged furrows (Doyle, 1992; Doyle &
Hotton, 1991), suggesting they may be on the eudicot stem
lineage rather than in the crown group (although similar
irregularities occur in the near-basal eudicot Nelumbo: Borsch
& Wilde, iooo; Kuprianova, 1979). In the lower Potomac
Group (Aptian?), there are ternately lobed leaves called
Viliphyllul1l (Berry, 1911; Doyle & Hickey, 1976; Hickey &
Doyle, 1977) that are suggestive of Ranunculales, the first
eudicot branch in molecular trees.

Other lower Potomac fossi·ls have been compared with
monocots (Doyle, 1973; Walker & Walker, 1984): narrow
leaves with apically converging venation, known as
Acaciaephyllwn; and monosulcate pollen called LiliacidiTes,
with sculpture that grades from coarse in the middle of the
grain to fine at the ends, a feature found in many monocots
but not known in living magnoliids. These comparisons have
been criticized by Gandolfo et al. (2000). These authors were
correct in arguing that the leaf criteria proposed by Doyle
(1973) for separating monocots from gymnosperms do not
separate monocots from Gnetales, including the lower Potomac
genus Drewria (Upchurch & Crane, 1985). Still,
Acaciafphyllum appears to differ from Drewria and extant
Gnetales in having spiral rather than opposite leaf arrangement
and apical vein fusion. Some pollen types assigned to
Liliacidites and considered monocots by Doyle (1973) and
Walker & Walker (1984), but segregated by G6czan and Juhasz
(1984) as Similipollis, differ in having finer sculpture at the
proximal pole and sulcus margins rather than the ends of the

grain and were therefore questioned as monocots by Doyle
and Hotton (1991). As noted by Gandolfo et al. (2000), Friis et
al. (1997b) associated such pollen with carpels (Anacostia)
that were clearly not monocots (possibly related to llliciales?).
However, more distinctively monocot-like pollen with fine
sculpture at the ends of the grain has not yet been found in
situ. Gandolfo et al. cited several other associations of
Liliacidites with non-monocotyledonous floral remains (e.g.,
L. minutus, associated with Virginialllhus, discussed below),
but all of these are pollen types without sculpture gradation
that were assigned to Liliacidites by authors who used this
genus in a broader sense.

Floral remains representing another magnoliid line.
Laurales, are known from the Albian. Virgillianthus (Friis eT
al., 1994a), from the upper Potomac Group, appears to be
related to Calycanthaceae in having a deep hypanthium and
other calycanthaceous features but is more primitive in having
monosulcate rather than disulculate pollen. Cenomanian
flowers and inflorescences called Mauldinia (Drinnan et al.,
1990) and associated wood (Paraphyllallthoxylon; Herendeen,
1991) correspond in great detail to Lauraceae, and similar but
more fragmentary flowers occur in the Albian (Crane eT al.,
1994). Magnoliales, once considered the most primitive
angiosperms but not basal in molecular trees, are not definitely
known until the Cenomanian, represented by flowers and
leaves of A rchaeanthus (Dilcher & Crane, 1984), an apparent
stem relative ofMagnoliaceae. However, Aptian monosulcate
pollen with granular exine structure (Lethomasites; Ward eT
al., 1989) and Albian laminar stamens containing smooth
monosulcate pollen (Crane et al., 1994; figs II a, b) may
represent this clade.

The Albian marks the explosion of tricolpate eudicot
pollen, and many Albian megafossils can be associated with
particular eudicot lines. Significantly, all well-reconstructed
Albian eudicots appear to be related to groups that molecular
phylogenies place near the base oftheclade. Many are relatives
of Platanus and Nelumbo, which molecular data unexpectedly
unite with Proteaceae in a clade called Proteales (APG, 1998),
probably the second branch in eudicots. The oldest are
inflorescences of unisexual flowers that resemble those of
Platanus but are associated with pinnately compound
Sapindopsis leaves (Crane et al., 1993), and peltate Nelumbites
leaves and pitted floral receptacles that differ from those of
Nelumbo in being round rather than flat-topped (Upchurch et
al., 1994). Relatives of Buxaceae, another early branch, are
represented by inflorescences of unisexual flowers called
Spanoniera (Drinnan et al., 1991). It is not until the
Cenomanian that we see definite 'core' eudicots (rosids,
asterids, and associated smaller groups), such as pentamerous
flowers of a rosid type (Basinger & Dilcher, 1984) and the
first members of the Normapolles pollen complex (Laing,
1975; Pacltova, 1971, 1981), later members of which have
been associated with flowers of 'core Amentiferae' or 'higher'
Fagales (Friis, 1983; Schonenberger et aI., 2001; Sims eT al.,
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1999). However, tricolporate pollen, which is probably basic
for rosids and asterids, is known from the late Albian (Doyle
& Robbins, 1977; Laing, 1975), suggesting that core eudicots
had originated by that time.

The fact that the stratigraphic pattern of appearance of
pollen, leaf and floral types agrees as well as it does with
molecular phylogenies may also be an argument against
molecular clock analyses that date the angiosperms as much
older than the Cretaceous. If angiosperms had undergone a
substantial part of their diversification before the Cretaceous,
it is hard to imagine why they 'waited in line' and then filed
into the Cretaceous fossil record in the same order that
molecular evidence indicates they originated long before.

ANGIOSPERM ROOTING AND
ANGIOSPERM OUTGROUPS

Although molecular trees do not indicate directly which
fossil seed plants were most closely related to angiosperms,
they may help indirectly in the search for angiosperm outgroups
by suggesting which states are ancestral and thereby refining
our search image. For example, the discovery of vessels in
Permian gigantopterids (Li & Taylor, 1999; Li et al., 1996)
might suggest that these plants were related to angiosperms.
However, molecular results (cf. Fig. 6) contradict this
argument, since (unlike earlier morphological analyses:
Donoghue & Doyle, 1989; Young, 1981) they indicate that
the common ancestor of angiosperms did not have vessels:
Amborella is vessel less, and Nymphaeales either lack vessels
or have cells with porose pit membranes that are intermediate
between tracheids and vessel elements (Schneider & Carlquist,
1996; Schneider et al., 1995). In contrast, however, the same
trees imply that the absence of vessels in Winteraceae and
Trochodendraceae is a result of secondary loss. Ecological
and biogeographic scenarios for such loss, as a possible
consequence of migration into cooler high-latitude areas, have
been discussed by Doyle (2000) and Feild et al. (2000).

Another example concerns exine structure. As shown in
Fig. 6 and discussed above, molecular phylogenies imply that
the first angiosperms had columellar structure (either
intermediate or well-developed), rather than granular structure,
as previously thought (Donoghue & Doyle, 1989; Van Campo
& Lugardon, 1973; Walker, 1976; Walker & Walker, 1984).
This suggests that paleobotanists should look more closely at
Late Triassic monosulcate and related pollen types described
by Cornet (1989) as the Crinopolles group, which have
reticulate sculpture and conspicuous columellae but a thick,
gymnosperm-like endexine (Cornet, 1989; Doyle & Hotton,
1991). Doyle and Hotton (1991) argued that this combination
of features might mean that Crinopolles plants were related to
but more primitive than angiosperms (i.e., angiosperm stem
relatives). This suggestion conflicted with the hypothesis that
the first angiosperms had granular exines. which predicted

that the gymnospermous endexine was lost before the origin
of columellae, but the molecular evidence that columellar
exines are ancestral removes this objection. Thus association
of Crinopolles pollen with other organs should b'e a high
priority for paleobotanists.

Although it would be most sensational to find angiosperm
stem relatives in the Triassic or Jurassic. the possibility that
some such plants persisted into the Cretaceous should not be
overlooked. A possible candidate is Archaefructus, originally
described as Late Jurassic (Sun et al., 1998) but redated as
Barremian-Aptian (Barratt, 2000; Swisher ef al., 1999), an
elongate axis bearing numerous well-spaced follicles. If
Archaefructus is a floral axis, as assumed by Sun et al. (1998),
it is unlike and possibly more primitive than anything in living
angiosperms. However, if it is instead an inflorescence, this
argument may not hold. Another is Afropollis (Doyle et al.,
1982), a widespread pollen group in the late Barremian through
Cenomanian of Northem Gondwana. which includes coarsely
reticulate grains that vary from operculate to zonasulculate
and inaperturate. Doyle et al. (1990a, b) speculated that
Afropollis might represent extinct relati ves of Winteraceae,
but unlike most angiosperms and like the Crinopolles it has a
thick, laminated endexine. Friis et al. (1999) found Afropollis
in non-angiospermous microsporangia from the Barremian­
Aptian of Portugal, apparently excluding it from the
angiosperm crown group, but not necessarily from the stem
lineage (Doyle, 2(00).

CONCLUSION

It would be presumptuous to argue that paleobotanists
should accept molecular phylogenies without question, but
these trees are based on a vast and ever-growing body of data
that cannot be ignored, and they can be a rich source of
hypotheses for future research. Furthermore. molecular trees
show remarkable agreements with the Cretaceous angiosperm
record. Depending on which line of evidence is considered
more reliable, this congruence can be taken as fossil
confirmation of molecular results, molecular evidence that the
fossil record provides a good picture of the early phases of
angiosperm evolution, or both.
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