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ABSTRACT

Prasanna K. 2023. Diet of Indus Civilization: Reinterpretations from Multi–Site Stable Isotopic Mortuary Analysis. Journal 
of Palaeosciences 72(1): 55–58.

Several insights on the identification and mobility of the Indus Civilization were provided by previous researchers based 
on the results limited towards archaeological context. In this study, several such published data of Mortuary samples from the 
major urban centre of Harappa, the eastern frontier town of Farmana, and the post–urban necropolis at Sanauli are re–evaluated in 
context with the modern dental samples. The results are compared to the compositional signatures found within teeth from modern 
humans from the USA, East Asia, Mexico and Bulgaria, which is expected to show variance in their isotopic signature depending 
upon regional level precipitation and diet. The results from δ18O signatures from the Indus Valley point towards dependence on 
riverine water for drinking.
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INTRODUCTION

THE application of stable isotope analysis in the field 
of anthropological studies, especially in the process of 

identification of human remains, has become increasingly 
popular over the past decade (Dupras & Schwarcz, 2001; 
Chenery, 2003; White et al., 2004; Chesson et al., 2018). 
Human skeletal remains are primarily found in the form of 
bone, tooth enamel and hair. Unlike tooth enamel and hair 
tissues, which remain unchanged once they are formed, 
bone undergoes periodic remodelling. The stable isotopic 
composition of bones reflects the dietary patterns of an 
individual for a period ranging from several months to years 
prior to their death, depending on the bone type and location. 
Unlike permanent teeth, which develop between birth and 
age 12, deciduous teeth are formed at the time of gestation. 
Once teeth are formed, their isotopic values become fixed 
and remain unchanged throughout an individual's life, as 
teeth do not undergo remodelling. By comparing the isotopic 
values of teeth and bones, it is possible to infer changes in an 
individual's diet and migration patterns over time. Therefore, 
the analysis of stable isotopes in multiple tissues can provide 
a measurable dietary history of an individual. While the 
stable isotope signal from bone reflects the chemistry of diet 
and place of residence, enamel, on the other hand, is formed 

during early childhood (Price et al., 1994; Kohn et al., 1999; 
Budd et al., 2000; Hillson, 2005). The deposition of carbon 
in the enamel occurs in the form of carbonate ions, which are 
incorporated into the crystal structure of inorganic apatite 
or bioapatite. This incorporation happens in two ways: as 
"structural carbonate," which substitutes the phosphate 
position in the crystal structure, and as "adsorbed carbonate," 
which attaches to hydration layers and crystal surfaces. Both 
forms of carbon are influenced by the individual's diet. Carbon 
isotopes in bone and tooth enamel are used for reconstruction 
of the paleo–diet dependent upon the source of 13C derived 
from the plants and animals ingested (Lee–Thorp et al., 1989; 
Sullivan & Krueger, 1981; Tieszen & Fagre, 1993; Cerling & 
Harris, 1999; Froehle et al., 2012). Dental enamel derives its 
oxygen component from the water present in the body. The 
isotopic make up of this body of water is influenced by the 
isotopic composition of the water that individuals consume 
from their surroundings, which in turn is determined by 
the local precipitation patterns. The variations in oxygen 
isotopes in fossils, on the surface, largely depend on the 
isotopic composition of the water source and in turn, on 
rainfall (Dansgaard, 1964; Kohn, 1996; Luz & Kolodny, 
1985, 1989). Secondary influences, such as water ingested 
from food and atmospheric oxygen are minor. Isotopes in 
rainfall are determined by the relative abundance of the heavy 
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18O isotope to lighter 16O in water, due to physical processes 
such as evaporation and precipitation (e.g., Dansgaard, 1964). 
Significant factors affecting rainfall δ18O values are latitude, 
elevation, amount of precipitation, and distance from the 
evaporation source (e.g., an ocean). When water evaporates 
over the ocean, it becomes relatively lighter isotopically 
(more 16O) than the water left behind. As this moisture 
moves over land, the first precipitation accommodates more 
of the heavy isotope and with progressive higher elevations; 
the rain becomes lighter in isotopic content. Thus, oxygen 
isotope ratios have great potential to vary geographically and 
provide a tool to reconstruct human settlement and migration. 
In this study, we have used modern human tooth data from 
previously published literature where tooth enamels were 
analysed from samples from the diverse region across the 
world with different dietary habits; the USA and South East 
Asia (Regan, 2006), Mexico (Juarez, 2011) and, Bulgaria 
(Kamenov & Curtis, 2017). These baseline data were used to 
infer the diet and drinking water of the individuals sampled 
from the Indus burial sites obtained from Kenoyer et al., 2013 
for Harappa and Valentine, 2013 for Farnama and Sanauli as 
shown in Fig. 1.

Fig. 1—Map of India showing study site Harappa (red 
circle), Sanauli (Green circle) and  Farmana (Blue 
Circle) from which the stable isotope data for Indus 
civilisations skeletal remains were collected in the 
present study.

DISCUSSION

Carbon isotope signature of mammalian carbonates has 
been used to reconstruct diet in animals and humans (Luz et 
al., 1990; Ambrose & Norr, 1993; Passey & Cerling, 2002; 
Passey et al., 2005a, b; Stevens et al., 2006). As foods eaten 
by human/animals, δ13C values in dental enamel carbonate 
tend to be enriched about 14‰ in comparison to primary 
food source (Cerling & Harris, 1999). The enrichment in 13C 
is likely the result of fractionation during the precipitation of 
bioapatite minerals from dissolved inorganic carbon within 
the body. Thus, the δ13C of human tooth enamel reflects the 
diet, which varies with the intake of the relative proportion 
of C3vs C4 plant diet, and the intake of meat, in the regional 
context. Results of previous isotopic ratios studies are shown 
in Fig. 2. In these studies, tooth enamels were analysed from 
samples retrieved from the diverse region across the world 
with different dietary habits; the USA and South East Asia 
(Regan, 2006), Mexico (Juarez, 2011) and Bulgaria (Kamenov 
& Curtis, 2017). The results show that the lowest δ13C, i.e.–
17.2‰ is inferred to be influenced by a diet of C3 crop, i.e. rice 
from the population surveyed from Southeast Asia (Vietnam, 
Korea, Laos, Cambodia and Philippines) (Regan, 2006). The 
tooth samples from Bulgaria are enriched compared to that of 
the Southeast Asian cluster to around–11.7‰. This enrichment 
is inferred to be influenced by a diet rich in a mixture of C3 
(legumes) and C4 (millets) types of vegetation. Tooth samples 
from the USA and Mexico have shown a higher enrichment 
in 13C, reflecting a diet dominated by C4 plants, such as corn 
or maize, sugarcane, sorghum, and millets in their region 
(Juarez, 2011).

The average value of δ13C from Harappa is –11.85 ± 0.99 
(n= 32) whereas δ18O is –4.82 ± 0.94 (n= 32). From the 36 
samples in Farmana, the average value is δ13C –9.65 ± 2.43 
and δ18O is –3.17 ±1.31. From the 66 samples from Sanauli 
the average value is δ13C –11.89 ± 1.15 and δ18O is –4.33 ± 
0.82 (Kenoyer et al., 2013; Valentine, 2013).

In comparison to the modern samples mentioned 
above, Harappa and Sanauli both have mean δ13C of–11.9‰, 
whereas the mean value at Farmana is–10.0‰ suggesting 
millets or other C4 crops were consumed by individuals in 
the mortuary populations of Sanauli and Harappa, but millets 
contributed significantly to diet at Farmana. According to the 
archaeobotanical data (Bates et al., 2018), it was inferred that 
millets comprised a significant portion of the crop remains 
at all Harappan sites. The diversity of foodstuffs discovered 
in the archaeobotanical analysis (Weber & Kashyap, 2016) 
suggests the possibility that dietary choices may have been 
guided in part by group affiliation. The overall assemblage of 
plants revolved around cereals and pulses and incorporated 
both summer and winter crops. There is the combined use 
of Southwest Asian cereals, like barley and wheat with 
indigenous millets.
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The δ18O value found in meteoric water differs depending 
on the region, and is influenced by various climatic parameters 
such as latitude, altitude, distance from the coastline, and 
temperature. Despite relatively large standard deviations 
within the same locations, due to our understanding of the 
several metabolic fractionations in the human body that 
influences the δ18O values. Linear equations between the 
drinking water oxygen isotopes (δ18Ow) values and of dental 
carbonate oxygen isotopes (δ18Oc) can be drawn. These 
equations are region specific, for example, the Middle East 
was defined by Posey (2011), the relationship for the USA 
was established by Ehleringer et al., (2010) (based on the 
human tooth). For Europe Longinelli (1984) established a 
relationship based on phosphate remains in the tooth enamels. 
The slope and intercept from these plots may vary due to the 
various factors like sources of drinking water ingested and 
metabolic effect.

In this study, the relationship (Equation 1) between 
the ionic forms of oxygen (phosphate oxygen and structural 
carbonate) in archaeological human dental enamel between 
dental carbonate by Chenery et al., (2012) was used. This 
equation allows direct comparison of data produced by the 
different methods and allows drinking water values to be 
calculated from structural carbonate data with confidence.

       (1)

Based on this relationship between drinking water δ18O 
and apatite carbonate the estimated environmental water 
values in Harappa would be–7.39 ± 1.55 ‰ with a minimum 
of–12.27‰ and a maximum of–4.08‰ at Harappa. However, 
~80% of the samples are between–6 to–10‰ which is the 
seasonal variation of the δ18O for the river Ravi–11.2‰ for 
summer and–6‰ for winter seasons (Ajaz & Jan, 2002). 
Similarly in Sanauli, the environmental water estimated 

Fig. 2—δ 13C vs δ 18O of plot of the retrieved data of modern 
human dental isotopes from Mexico, USA and 
Bulgaria. Note that the Southeast Asian samples 
show lower δ 13C and followed by Bulgaria and 
subsequently by USA and Mexico.

would be –6.60 ± 1.35 ‰, –10.31 and –2.27. Here ~86% of 
the samples are between –5 to –9‰ which is similar to the 
seasonal variation of the δ18O for the river Yamuna which is 
–6.2 to –10.3‰ (Dalai et al., 2002). Whereas, in Farmana the 
average δ18O is –4.99 ± 1.29‰ with a minimum of –7.68‰ 
and a maximum –2.93‰ where ~88% of the samples shown 
in Fig. 2 are between –3 to –7‰ which is enriched compared 
to Sanauli and Harappa due to the absence of any riverine 
source of drinking water indicating stored water for drinking.

CONCLUSION

The study conducted on the remains of humans buried 
in Harappa, Sanauli and Farmana burials aimed to determine 
the average diet and water intake of the people living in the 
region. The findings indicate that millets or other C4 crops 
were consumed by individuals in the mortuary populations 
of Sanauli and Harappa, but millets contributed significantly 
to diet at Farmana. This can be inferred from the presence of 
these crops in the archaeological assemblage and the fact that 
millets were the most commonly utilized crop in the region.

Moreover, the study also revealed that the people of 
Harappa ingested water from rivers such as Ravi. This 
suggests that these rivers played a crucial role in providing 
water to the local population and supporting their livelihoods. 
The utilization of river water for drinking purposes also 
sheds light on the resourcefulness of the Harappan people 
in adapting to the environmental conditions of the region. 
The people of Sanauli ingested water from rivers such as the 
river Yamuna. People of Farmana may have stored water for 
drinking.
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