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ABSTRACT

Retallack GJ 2022. Internal structure of Cambrian vendobionts Arumberia, Hallidaya and Noffkarkys preserved by clay in 
Montana, USA. Journal of Palaeosciences 71(1): 1–18.

Quilted fossils known as vendobionts have remained enigmatic because preserved as unrevealing impressions in sandstone, 
for example Arumberia banksi Glaessner & Walter, Noffkarkys storaasli Retallack & Broz, and Hallidaya brueri (Wade) Retallack 
& Broz from the Ediacaran to Cambrian, Grant Bluff and Arumbera formations of central Australia. These same species are 
reported here in shaley facies of the Early Cambrian Flathead Sandstone of Fishtrap Lake, Montana. These fossils preserved in 
three dimensions are infiltrated by clay and confirm that each taxon has distinctive internal chambers reflecting segmentation seen 
on the surface. Sedimentary structures, petrography and geochemistry of the Montana sediments are evidence that Arumberia, 
Noffkarkys and Hallidaya lived on supratidal flats of a wave–protected rock–bound estuary unaffected by marine bioturbation, 
and represent intertidal to supratidal ecosystems widespread from the Ediacaran to Cambrian.

Key–words—Cambrian, Vendobiont, Arumberia, Noffkarkys, Hallidaya.

INTRODUCTION

PETROGRAPHIC thin sections now reveal internal 
structure of a variety of problematic vendobiont fossils 

which span the Ediacaran–Cambrian boundary: Arumberia 
banksi Glaessner & Walter (1975), Noffkarkys storaasli 
Retallack & Broz (2020), and Hallidaya brueri (Wade) 
Retallack & Broz (2020). These species were previously 
known from Ediacaran and Early Cambrian sandstone 
impressions in central Australia (Retallack & Broz, 2020), but 
Cambrian examples from clayey intertidal facies of the lower 
Flathead Sandstone near Fishtrap Lake, Montana (Retallack, 
2013a), are infiltrated with fine clay in a way that reveals 
histological organization important to understanding their 
biological affinities. They are not thoroughly permineralized 
with calcite, silica, phosphate, or pyrite, like permineralized 
fossil plants and lichens (Matten, 1973; Gould & Delevoryas, 
1977; Taylor et al., 1997; Yuan et al., 2005; Bippus et al., 
2017), but do reveal the three–dimensional organization of 
recalcitrant versus easily decayed tissues that has been helpful 
in understanding unmineralized fossil plants and lichens 
(Jennings, 1974, 1985; Retallack, 2009, 2011).

A secondary aim of this study is to re–evaluate the idea 
of Ediacaran–Cambrian agronomic revolution (Seilacher & 
Pflüger, 1994; Oji et al., 2018), Ediacaran savanna hypothesis 
(Budd & Jensen, 2017), garden of Ediacara (McMenamin, 
2000), and underground Vendobionta (Grazhdankin & 
Seilacher, 2002). These terrestrial metaphors have been 
used to describe changes in seas of the past, but what of 
Ediacaran–Cambrian changes on land from the large number 
of recently recognized Ediacaran and Cambrian paleosols 
(Retallack, 2013b, 2016a, b; Liivamägi et al., 2014)? Rather 
than assuming that all Ediacaran and Cambrian rocks are 
marine, there is now the prospect of comparing and contrasting 
marine and terrestrial evolution. Did the churning of substrate 
by marine organisms destroy Ediacaran marine matgrounds as 
a catastrophe or pulsed catastrophe (Schiffbauer et al., 2016; 
Darroch et al., 2018b; Buatois et al., 2018), or was it a drawn–
out transition (Buatois et al., 2014; Shahkarami et al., 2017; 
Laing et al., 2019), or compromised by sea level changes 
(Shahkarami et al., 2020)? Or were terrestrial vendobionts 
(“Mattressland” of Retallack & Broz, 2020) unaffected by 
the evolution and intensification of marine bioturbation 
(“Wormworld” of Schiffbauer et al., 2016)?
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GEOLOGICAL SETTING AND FOSSILS

The fossils described here from near Fishtrap Lake, in 
Sanders County, Montana (Fig. 1) are pre–trilobite Early 
Cambrian in age (522–539 Ma), based on associated trace 
fossils (Retallack, 2013a). The fossils were all obtained from 
a 1.7 m thickness of red siltstone, which is a sequence of 
six thin paleosols within the basal Flathead Sandstone (Fig. 
2). These red siltstones have a distinctive assemblage of 
trace fossils, Manykodes pedum, Bergaueria hemispherica, 
Didymaulichnus lyelli and Torrowangea (Retallack, 2013a). 
Manykodes pedum (Dzik, 2005) is sometimes still referred to 
as the superseded name “Treptichnus” pedum (Buatois, 2018), 
but the Pennsylvanian ichnogenus Treptichnus is inappropriate 
in several ways, especially its long straight sections of burrow 
between looping stitches (Maples & Archer, 1987; Rindsberg 
& Kopaska–Merkel, 2005).

The trace fossils are of Early Cambrian age, 
stratigraphically below the first appearance of trilobite trace 
fossils in the Flathead Sandstone (Retallack, 2013a), and well 
below an early Middle Cambrian assemblage of trilobites 
of the Albertella zone in the Wolsey Shale (Walcott, 1917; 
Keim & Rector, 1964; Bush, 1989). Sedimentary facies are 
evidence of a rockbound estuary unconformable on littoral 
talus of the Mesoproterozoic Libby Formation (Retallack, 
2013a), a sedimentary setting comparable with modern Coos 
Bay, Oregon (Lund, 1973).

The marine trace fossils are all within the beds, which 
show mineral and chemical trends of weathering, and negative 
strain and mass transfer of paleosols downward from horizons 
of abundant vendobionts in growth position (Retallack, 
2013a). In contrast the vendobiont fossils Arumberia, 
Hallidaya and Noffkarkys are on the bed and paleosol tops 
marked by clay enrichment and more abundant ferruginized 

Fig. 1—Geological map of fossil localities near Fishtrap Lake, Montana (Retallack 2013a).
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microscopic filaments (Fig. 2). Ferruginized filamentous 
structures on the tops of the beds vary from 38 volume % in 
the surface (A) horizons to 12 volume % in subsurface (C) 
horizons, as determined from point counting thin sections 
(Retallack, 2013a) and magnetic susceptibility (Retallack 
et al., 2003). The red paleosols are of two distinct kinds: (1) 
Radio pedotype with A–Bg–C profile, including Bg horizon 
with marcasite (Sulfaquent of intertidal flats), and (2) Cool 
pedotype with A–C horizons only (Fluvent of supratidal flats). 

Although the red siltstones are rock now, they were soft soils 
easily penetrated by filamentous microbial structures.

MATERIALS AND METHODS

This work involved small scale geological mapping 
of the locality at Fishtrap Lake Montana (Fig. 1), as well 
as field study of comparable assemblages in the Arumbera 
and Grant Bluff formations of central Australia (Retallack 

Fig. 2—Measured section of fossil localities in the Early Cambrian Flathead Sandstone near Fishtrap Lake, Montana. Grain 
size and mineral composition was determined by point counting petrographic thin sections, and magnetic susceptibility 
measured from hand specimens (Retallack, 2013a).
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& Broz, 2020), Synalds, Lightspout, and Bridges formations 
near Church Stretton, England (Bland, 1984; McIlroy et al., 
2005), Jodhpur Sandstone, India (Kumar & Pandey, 2008), 
Bonney Sandstone in Brachina Gorge, Flinders Ranges, 
South Australia (Bland, 1984), and Billy Creek Formation 
in the eastern Flinders Ranges, South Australia (Bland, 
1984; Retallack, 2008), as well as museum collections of 
Geoscience Australia, Canberra A.C.T. New collections of 
megafossils from all these localities are curated in the Condon 
Collection of the Museum of Natural and Cultural History of 
the University of Oregon in Eugene (online catalog at http: //
paleo.uoregon.edu/condon/). Several fossils protruding from 
edges were sacrificed for preparation of petrographic thin 
sections, and all thin sections were cut vertical to bedding. A 
previous study reports data from point–counting thin sections, 
major element geochemistry, and magnetic susceptibility 
of this sequence (Retallack, 2013a). Laser scans of several 
specimens were provided by Jesse Pruitt of the Visualization 
Center of the Idaho Museum of Natural History, Idaho State 
University, Pocatello.

ARUMBERIA BANKSI GLAESSNER & WALTER 
1975

Morphology

Arumberia is a scoop–shaped fossil with radiating 
furrows from the deepest end (Figs 3C–D, 4E–F, 5C), a 
strict definition close to the holotypes of the genus recently 
redescribed (Retallack & Broz, 2020). There has been 
dispute about whether Arumberia is a microbially mantled 
sedimentary structure, such as a linguoid ripple mark or 
flute cast, rather than a megafossil (McIlroy & Walter, 1997; 
McIlroy et al., 2005). Recent study of the type material in 
Canberra (Geoscience Australia CPC14948) shows that 
Arumberia has inverse topology to a ripple (Retallack & 
Broz, 2020), but was not a microbially mantled flute cast 
either, because thin sections of material from Australia 
(Retallack & Broz, 2020) and in this paper (Fig. 6C–D) 
show that it has a complex quilted internal structure. This 
three–dimensional pattern is comparable with thin sections of 
enigmatic Ediacaran Vendobionta (Seilacher, 1992): Chinese 

Fig. 3—Sketches of Early Cambrian megafossils from Fishtrap Lake, Montana: Hallidaya brueri (Wade) Retallack & Broz 
(A–B), Arumberia banksi Glaessner & Walter (C–D), and Noffkarkys storaasli Retallack & Broz (E–J).
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Fig. 4—Fossils from the Early Cambrian Flathead Sandstone at Fishtrap Lake, Montana: Noffkarkys storaasli (A–D), Arumberia 
banksi (E–F), and Hallidaya brueri (G–H). Specimen numbers (Condon Collection, University of Oregon) and 
stratigraphic levels (after Retallack 2013a) F115967B at–105 cm (A–B), F115974 at–150 cm (C), F113719 upper side 
of slab at–150 cm (D), F115982 (E) and F115978 (F) both from–45 cm; F113713 (G) from–100 cm, and F113711 
(H) from–150 cm.

Yangtziramulus zhangi (Xiao et al., 2005; Shen et al., 2009), 
Namibian Pteridinium simplex (Jenkins, 1992; Grazhdankin & 
Seilacher, 2002), Swartpuntia germsi (Narbonne et al., 1997), 
and Ernietta plateauensis (Jenkins et al., 1981; Ivantsov et 
al., 2015), and Siberian Charnia masoni (Grazhdankin et al., 
2008). Also comparable are internal chambers of Silurian 
Rutgersella (Retallack, 2015a) and Devonian Protonympha 
(Retallack, 2018). Despite these constructional similarities, 
these other fossils have subhorizontal zig–zag sutures, mid–
ribs, or vanes not seen in Arumberia. Both Pteridinium and 
Ernietta have concave–up morphology embedded within 
sediment, and partly filled with sediment (Grazhdankin & 
Seilacher, 2002; Ivantsov et al., 2015), like Arumberia.

Measurements

Specimens from Fishtrap Lake fall within the 31–124 
mm width of type material of Arumberia banksi from central 
Australia (Retallack & Broz, 2020). Specimen P15979A–B 
(part and counterpart) is the most complete specimen: 82 mm 
wide (perpendicular to striation) and more than 84 mm long 
(incomplete). Central striations are 2.5–4 mm apart and each 
0.3–0.4 mm wide: dimples (hypichnial mounds) are 1.8–4.6 
mm in diameter. Specimen P15982A–B (part and counterpart) 
is 84 mm wide and incomplete in length. Its striations are 
spaced at 2.3–5.6 mm and are 0.6–1.6 mm wide.
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Fig. 5—Laser scans of Early Cambrian megafossils from Fishtrap Lake, Montana: Hallidaya brueri (Wade) Retallack & 
Broz (A–B), Arumberia banksi Glaessner & Walter (C), and Noffkarkys storaasli Retallack & Broz (D–E), including 
F113711 (A), F116823A (B), F115982A (C) and F115974 (D–E).
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Histology

In thin section the clay–poor silty interior of the fossil is 
very distinct from its clayey matrix with abundant ferruginized 
filamentous structures (Fig. 6C–D, K). The silty ellipse of the 
interior is outlined by a very thin organic layer and bisected 
by a thick, zigzagging, subhorizontal, carbonaceous seam. 
At intervals of 1–2 mm this central carbonaceous seam has 
short vertical seams reaching either up or down in the same 
direction as the flexure at the point of juncture. This distinctive 
double layer “quilting” (in the sense of Seilacher, 1992) is 
identical to that of Dickinsonia (Retallack, 2016a), Rutgersella 
(Retallack, 2015a), and Protonympha (Retallack, 2018), but 
more complex than the single layer “quilting” pattern of 
Yangtziramulus (Shen et al., 2009), Pteridinium (Grazhdankin 
& Seilacher, 2002) and Ernietta (Ivantsov et al., 2015). The 
vertical struts at inflections also differentiate it from a thin 
abiotically leached layer. On the other hand, frond fossils, 
such as Charnia and Swartpuntia, are internally much more 
complex with multiple orders of fractal branching (Narbonne 
et al., 1997; Grazhdankin et al., 2008; Retallack, 2016a).

Biological affinities

Chambered organization and disruption of the substrate 
below is evidence against interpretation of Arumberia as a 
sedimentary structure, such as a linguoid ripple or flute cast, 
with or without a mantling microbial mat (McIlroy & Walter, 
1997; McIlroy et al., 2005). Modern microbial mat mantles 
considered comparable with Arumberia by Kolesnikov et al. 
(2012), are internally laminated, not chambered and disrupted 
like Arumberia (Retallack & Broz, 2020). By an alternative 
interpretation (Kumar & Pandey, 2008; Kolesnikov et al., 
2012; McMahon et al., 2021), Arumberia is a continuous 
surface microbial texture and not a discrete individual fossil, 
but that interpretation does not apply to its holotype specimens 
(Retallack & Broz, 2020) or the material described here. The 
silt or sand associated with Arumberia is similar to equally 
problematic “psammocorals” (Seilacher, 1992), but these 
have much higher relief and an outer organic rind enclosing 
passive sand fill (Savazzi, 2007), not matched by the internal 
orthogonal organic seams of Arumberia at Fishtrap Lake (Figs 
6C–D, K) and in Central Australia (Retallack & Broz, 2020, 
figs 6c, 8b, d, f).

The original interpretation of Arumberia is that it 
was a cup–shaped cnidarian polyp, which fell on its side 
with some included sediment (Glaessner & Walter, 1975). 
General objections to cnidarian interpretation of vendobionts 
(Seilacher, 1992) have led to more recent interpretations 
as an extinct stem metazoan (Hoyal Cuthill & Han, 2018). 
The asymmetric scoop shape of Arumberia is not like a 
partially filled polyp of a cnidarian, nor stem metazoan 
(Retallack & Broz, 2020). Some specimens of Arumberia 
banksi are laterally linked and intergrown without reaction 

tissue (Glaessner & Walter, 1975), like Pteridinium simplex 
(Grazhdankin & Seilacher, 2002) and Phyllozoon hanseni 
(Retallack, 2007), but unlike integrated tissues of metazoan 
individuals.

An alternative interpretation is that Arumberia was 
a recumbent, areolate lichen (Retallack, 1994), perhaps a 
glomerolichen (Retallack, 2015b). Like Pteridinium simplex 
(Grazhdankin & Seilacher, 2002) and Ernietta plateauensis 
(Ivantsov et al., 2015), it lived on and partly buried by 
sediment and included sediment less clayey than its matrix. 
In a supratidal paleosol context (Fig. 2) this sediment would 
have been eolian loess and silt, distinct from fluvial and 
intertidal clay settling from suspension. Perhaps they had 
hollows and intersquamule cavities that trapped sediment like 
window lichens (“Fensterflechten”) such as Lecidea decipiens 
and Eremastrella tobleri (Vogel, 1955), and Endocarpon 
crystallinum (Timdal, 2017). Silica permineralized Ernietta 
studied in thin section by Pflug (1973, 1994) were constructed 
of hollow tubular elements, like lichen podetia of woven 
filaments (Retallack, 1994). Unlike modern podetia of 
Cladonia (Brodo et al., 2001), Ernietta, Pteridinium, 
Yangtziramulus, Charnia and Arumberia had a system of tubes 
amalgamated along their length into sheets.

NOFFKARKYS STORAASLI RETALLACK & BROZ 
2020

Morphology

The most striking feature of Noffkarkys is its fine regular 
rhomboid quilts, arranged between radiating grooves (Figs 
3E–J, 4A–D, 5D–E). This arrangement is like rhomboid 
scales of palaeoniscid fish (Wade, 1935; Schaeffer, 1984), but 
without hard parts, only impressions bulging upwards in shale 
(Fig. 6A–B, I). These fine quilts are difficult to photograph 
because of a size that appears like a blur, so alternative images 
are provided of sketches (Fig. 3H–J) and laser scans (Fig. 
5D–E).

Most Noffkarkys specimens do not show the overall 
shape because they are larger than the slab. The small holotype 
from central Australia centered on a slab shows an obovate, 
laterally lobed, frond. This is most like Ediacaran fronds such 
as Beothukis and Trepassia (Narbonne et al., 2009; Brasier 
et al., 2012), which lack holdfasts or stems, and were also 
prostrate on the sediment surface (McIlroy et al., 2021). A 
large collection of Noffkarkys from Fishtrap Lake shows 
considerable variation in size and shape from simple bilobed 
fronds (Figs 3G, 4C) to complex lobate forms (Figs 3E, 4D). 
Some lateral margins are overfolded (left in Figs 3E, 4A) as if 
pushing upwards against resistance to growth in that direction, 
but other margins are nearly flush with the surface (right side 
of Figs 3E, 4A). Some specimens show overlap of lobes (Figs 
3G, 4C) with one lobe above the other. Regardless of the size 
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Fig. 6—Petrographic thin sections of quilted (A–D, I, K), discoid (E–F), and filamentous fossils (G–H) and trace fossil (B) 
from the basal Cambrian Flathead Sandstone at Fishtrap Lake, Montana, with labelled enlargements (I–K from 4, 
5, 2 respectively). Noffkarkys storaasli, are finely quilted unifacial surfaces (A–B,I), with a finished upper surface 
grading into filamentous lower part. Arumberia banksi Glaessner & Walter is a coarse quilted structure defined by 
vertical and horizontal organic seams (C–D, K). Manykodes pedum (B) burrows have a looping stitch pattern and thin 
organic walls. Hallidaya brueri discoids (E–F, J) have dense upper and lower cortices, sometimes well preserved (E), 
sometimes decayed (F). Opaque organic filaments have a surrounding gray–green halo (G–H). Specimen numbers 
(Condon Collection, University of Oregon) and stratigraphic levels (after Retallack 2013a) are R3584 at–40 cm (A), 
R3598 at–160 cm (B,I), R3581 at–10 cm (C,K), F113720 at–110 cm (D), R3586 at–50 cm (E, J), R3596 at–150 cm 
(F), R3586 at–50 cm (G–H).
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of the lobes or overall thallus, quilts and grooves retain the 
same size and spacing.

Some Noffkarkys specimens imprint planes sub–
perpendicular to the bedding, covering fractures and muddy 
surfaces (argillans) that define the blocky structure of the 
Cool paleosol (specimens F113703, F115958). On upper 
bedding surfaces Noffkarkys forms lobate molds with 
striation radiating in all directions from a common centre, but 
subperpendicular Noffkarkys has flabellate shape with grooves 
radiating upwards. The quilted texture of Noffkarkys in one 
specimen drapes and smooths desiccation cracks, and rounds 
originally angular polygons of cracks (Retallack, 2013a, fig. 
2G). In other cases, Noffkarkys overprints a pyrite spherulite 
of the form commonly known as a “pyrite sun” (Retallack, 
2013a, fig. 2D).

Measurements

Fishtrap Lake Noffkarkys storaasli falls well within 
the size range of 13–72 mm wide (Fig. 7C–E) for paratypic 
material from central Australia (Retallack & Broz, 2020). The 
largest of 136 specimens collected from Fishtrap Lake (Figs 
3E, 4A) is incomplete at 271 mm wide and 223 mm long, 
with lobes 81–137 mm wide. Projecting backward along the 
converging seams between lobes to the initial growth center, 
gives an additional 210 mm, for a total of length of 443 
mm. If several such lobes were arranged radially around a 
growth center as in the Ediacaran frond Bradgatia (Flude & 
Narbonne, 2008; Brasier et al., 2012), then the whole structure 
could have been 0.9 m in diameter. Spacing of radiating 
grooves on the central Australian holotype is 1.7 ± 0.2 mm, 
and quilt widths are 0.5 ± 0.2 mm (Retallack & Broz, 2020), 
whereas 100 comparable measurements for a Fishtrap Lake 
specimen (Figs 4C, 5D–E) are 1.5 ± 0.3 mm, and 0.8 ± 0.2 mm 
(mean and one standard deviation), respectively (Fig. 7C–E).

Histology

Thin sections of Noffkarkys reveal that the upward 
bulging dark quilts are separated by deep grooves (Figs 6A–B, 
I). Within the quilts are four layers, from the top downwards; 
(1) dense fabric in a thick (100–200 μm) dark gray layer with 
opaque spots (20–50 μm diameter); (2) loose fabric in a thick 
(50–120 μm) semitransparent layer of loosely woven fabric; 
(3) tangled fabric in a basal thin (50–80 μm) layer of gray 
densely woven fabric, breached in places; (4) vertical fabric 
in a layer of vertically oriented, loosely woven, filaments 
extending downward more than 2 mm. Layer 4 connects in 
some places in the middle of the quilts with layer 2, and at 
other places within the quilt defining radial grooves, layer 4 
is open to the surface. Openings in the entire structure and 
diffuse contacts of layers 2–4 compared with the sharpness 

of layer 1 give the whole structure strong asymmetry in the 
vertical plane in which the thin sections were cut.

Filamentous structures seen in thin section are also 
apparent from scanning electron micrographs in secondary 
mode, revealing twisted dark tubular features 25–100 μm in 
diameter which branch downward from quilt margins into the 
matrix (Fig. 8A–B). At high magnification the clay has the 
crystal form of illite (Fig. 8C). Under back–scatter electron 
mode in which brightness of tone indicates atomic number, 
the grooves and quilt margins of natural fossil surfaces are 
bright with iron and the quilt faces dull with carbon and clay 
(Fig. 8D). This thin ferruginous (hematite) film may have 
aided preservation of the most distinct examples of Noffkarkys 
storaasli.

Biological affinities

Frond fossils like Noffkarkys, which also ranges down 
into the Ediacaran (Retallack & Broz, 2020), were once 
regarded as cnidarian sea pens (Pennatulacea: Fedonkin et al., 
2008), although their apical growth and quilt–like construction 
is the opposite of sea pens (Antcliffe & Brasier, 2007, 2008). 
Ford (1958) was first to compare quilted Ediacaran fossil 
impressions with seaweeds. Modern seaweeds with quilted 
thalli generally comparable with Noffkarkys include Padina 
pavonica (Phaeophyta), Codium effusum (Chlorophyta), and 
Delessaria serrulata (Rhodophyta), but these have distinct 
blades and holdfasts (Bold & Wynne, 2000), not seen in the 
Montanan or central Australian Noffkarkys. Fossil algae are 
either skeletonized and prone to brittle breakage, or organic 
and flimsy, preserved as carbonaceous films (Taylor & Taylor, 
1993), unlike molds and casts of the flexuous Fishtrap Lake 
fossils. Histologically the elongate filaments of Noffkarkys are 
more like green algae (Chlorophyta, Codiaceae), than equant 
cells of red (Rhodophyta) and brown algae (Phaeophyta: Bold 
& Wynne, 2000), but their stratification into subhorizontal 
layers is very different. Seaweeds wilt and rot in piles of wrack 
on beaches and well drained soils (Retallack, 1994), but do 
not spread with pressure buckling, and coat perpendicular 
surfaces like Noffkarkys.

Seilacher (2007) regarded comparable quilted fossils 
such as Dickinsonia as xenophyophore foraminifera for the 
following reasons: (1) quilt size independent of overall size; 
(2) clastic fill, like stercomere or incorporated substrate; 
(3) sessile habit on or within sediment; (4) evidence of 
interpenetration and regeneration; and (5) trails of mobile 
forms. The Montana fossils have a diffuse lower boundary 
attaching them to the substrate like xenophyophores, but 
xenophyophores have brittle calcified skeletons, whereas the 
Fishtrap Lake vendobionts were pliable, folded, soft–bodied 
organisms, molding over clasts, cracks, and pyrite suns 
(Retallack, 2013a). Xenophyophores are marine animals of 
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Fig. 7—Size distributions of Early Cambrian megafossils (A–E) from Fishtrap Lake, Montana and comparative modern 
lichen (G–H), and extinct vendobionts (F, I–J), and trilobitomorph (K). Modern lichen (Xanthoparmelia plittsi) is the 
specimen in collection of Museum of Natural and Cultural History. Sources of size data are Narbonne et al. (2009) 
for F, Gehling & Narbonne (2007) for I, Naimark & Ivantsov (2009) for J, and Zhang et al. 2003 for K.
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the deep sea, whereas Noffkarkys is found in supratidal to 
non–marine paleosols (Bland, 1984; Kolesnikov et al., 2012).

Noffkarkys storaasli has been described here in terms 
such as “quilt” and “lobes” that are neutral with respect 
to biological affinities, but the terminology of lichen thalli 
more adequately explains both its distinctive morphology 
(Figs 3E–J, 4A–D, 5D–E) and cross section (Figs 6A–B, I). 
The five histologically distinct layers from top to bottom can 
be interpreted as: (1) dense fabric in a thick, dark gray zone 
with opaque nests comparable with a cortical algal layer; 

(2) loose fabric in a loosely woven medulla; (3) tangled 
fabric in a gray densely woven fabric like a lower cortex; 
(4) vertical fabric of elongate structures of varying thickness 
radiating downwards like rhizines. Size distribution data 
are compatible with organisms with indeterminate growth 
such as a seaweed, xenophyophore, foraminiferan, or lichen. 
Noffkarkys storaasli vegetative lobes have a log–normal size 
distribution (Fig. 7C), as demonstrated here for the modern 
lichen Xanthoparmelia plittsi (Fig. 7G), and for vendobionts 
such as Aspidella (Gehling et al., 2000; Peterson et al., 2003; 

Fig. 8—Scanning electron micrographs of natural surfaces (not cross sections) of the quilted fossil Noffkarkys storaasli 
(specimen F113719 from–150 cm in Retallack 2013a) from Early Cambrian Flathead Sandstone, Fishtrap Lake, 
Montana. Details of quilt (A–B) shows radial grooves (sloping upper leaf to lower right) punctuated by dark filament 
insertions. Crystal form of clay (C) is that of illite. Backscatter image (D) shows ferruginous–carbonaceous filaments 
and grooves (white) in background of clay (gray).
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Hofmann et al., 2008) and Dickinsonia (Retallack, 2007). 
Comparable log–normal size distributions are presented here 
for other problematic fossils (Fig. 7F, I–J; data from Gehling 
& Narbonne, 2007; Hofmann et al., 2008, Narbonne et al., 
2009; Naimark & Ivantsov, 2009), and can be contrasted with 
normal size distributions of undisputed metazoans, such as the 
Cambrian Primicaris larvaformis (Fig. 7J, data from Zhang 
et al., 2002; Lin et al., 2006).

HALLIDAYA BRUERI (WADE) RETALLACK & 
BROZ 2020

Morphology

Hallidaya brueri (Wade, 1969) has been emended to 
include its constant associate “Skinnera brooksi”, as the lower 
and upper surfaces, respectively (Retallack & Broz, 2020). 
These are discoid fossils with a marginal area of radiating, 
branching striations and central area with three or more 
elliptical to lobate bodies, unlike other problematic discoid 
fossils reviewed by MacGabhann (2007) and Razumovskiy 
et al. (2015). The fossils are biconvex discoids, preserved as 
hypichnial ridges on the lower side with wide striated margin 
and few central bodies, and as epichnial grooves on upper side 
within narrow striated margin and many central bodies. The 
distinct central and marginal portions distinguish Hallidaya 
from non–fossil circular structures such as liesegang banding 
(Merino, 1984), nodules (Retallack, 1997), or accretionary 
lapilli (Reimer, 1983). Fishtrap Lake Hallidaya vary in 
distinctness and relief (Figs 3A–B, 4G–H, 5A–B), and some 
may have been partly decayed.

Measurements

Type material of Hallidaya brueri from central Australia 
is 5–50 mm in diameter (Retallack & Broz, 2020), like the 
best preserved one from Fishtrap Lake (Figs 3A, 4G, 5A), 
which is 22.8 mm in diameter, with a margin 3.3–7.1 mm 
wide, and central ovoids 2.6–3.4 mm wide and 3.7–5.8 mm 
long. All 15 specimens from Fishtrap Lake are 19.0 ± 2.8 mm 
in diameter (mean and standard deviation), with margin 7.2 ± 
1.3 mm wide, central ovoid length 8.9 ± 2.2 mm, and central 
ovoid widths 6.2 ± 1.8 mm.

Histology

In thin section, Hallidaya brueri is biconvex (Fig. 6E–F), 
thus explaining its negative relief on the upper side and 
positive relief on the lower side. The overall biconvex disc has 
dark carbonaceous–ferruginous clay on both sides of a central 
area of loose filamentous fabric, except for an irregular region 
of the bottom center where elongate features arch downward 
into the sediment below. An elevated central lumpy region of 
unusually thick, clayey–carbonaceous material corresponds 

with the inner subtriangular ring of the compressions. Other 
discoid outlines of comparable size were seen in thin section 
(Fig. 6F) with much thinner opaque outlines, a wider area of 
loosely woven fabric in the center, and a wider lower opening. 
These impressions may have been less distinct because of 
decay of dark organic matter back to the most decay–resistant 
outer envelope.

Biological affinities

Hallidaya, like Arumberia and Noffkarkys, is known in 
Cambrian as well as Ediacaran rocks, in which discoid fossils 
have traditionally been regarded as jellyfish, polyps, or sea 
pen holdfasts (Sprigg, 1947; Fedonkin et al., 2008). These 
discoid fossils are more strongly impressed in the center 
than the margins, where cnidarian muscle masses should be 
located (Seilacher, 1992), and they make surprisingly thick 
impressions for such deeply buried fossils (Retallack, 2007). 
Other discoid fossils such as Arkarua and Tribrachidium 
have been interpreted as echinoderms comparable with 
Edrioasteroids (Fedonkin et al., 2008). Cnidarian or 
echinoderm affinities for Hallidaya are ruled out by their 
fibrous histology (Fig. 6E–F, J). Associated filaments are 
not fungal decay of metazoans, because filaments are 
stouter (50–200 μm), longer and more branched than those 
of saprophytic fungi such as yeasts, moulds and rot fungi. 
Saprophytic hyphae are only 2–5 μm wide when preserved 
in amber (Poinar, 1992) and in permineralized fossil wood 
(Stubblefield & Taylor, 1988). Furthermore, these poorly 
preserved elongate elements radiate away from the lower 
center of the fossils rather than converging into them and 
coating their surfaces like saprophytes. Finally, the elongate 
elements are denser within, rather than outside, the fossils 
and decay does not seem to have opened large empty spaces 
for clay or silt infiltration. Metazoa, even decayed ones, are 
an unlikely explanation for Hallidaya or other comparable 
discoids (MacGabhann, 2007).

Discoid fossils have also been interpreted as microbial 
colonies (Steiner & Reitner, 2001; Grazhdankin & Gerdes, 
2007). Bacterial colonies can be concentrically banded and 
have complex radial and infolded patterns (Ben–Jacob et 
al., 1994; Shapiro, 1998), but not structures differentiated 
into central and marginal zones like Hallidaya. Microbial 
colonies collapse completely during burial compaction to form 
hypichnial ridges (Retallack, 2016a), unlike histologically 
differentiated and thick Hallidaya (Fig. 6E).

Finally, discoids have been compared with lichenized 
fungi and fungal fruiting bodies (Retallack, 1994; Peterson 
et al., 2003), because of peculiarities of their sessile growth, 
decay without marginal collapse, and compaction–resistance. 
Hallidaya brueri has been described here in terms such as 
“margin” and “ellipsoidal bodies” that are neutral with respect 
to biological affinities, but the terminology of fungi and lichens 
gives an array of options for its distinctive morphology (Figs 
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Fig. 9—Reconstructed paleoenvironment of Early Cambrian megafossils from the lower Flathead Sandstone near Fishtrap 
Lake, Montana.
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3A–B, 4G–H), and cross section (Fig. 6E). The “ellipsoidal 
bodies” for example, could be peridioles like those of bird 
nest fungus (Nidula candida), puffballs within a fringe like 
Geaster saccatum, pycnidia like those of the lichen Verrucaria 
mucosa, coralloid isidia comparable with Xanthoparmelia 
plittsi, or apothecia of Caloplaca diphyodes and Placopsis 
gelida (Brodo et al., 2001). Of these options a fungal fruiting 
body is compatible with its normal size distribution (Fig. 7B) 
comparable with reproductive structures (isidia of Fig. 7H) 
as opposed to log–normal distribution of vegetative lobes of 
lichens (Fig. 7G). Thin sections of Hallidaya do not show 
parallel and vertical filaments like a hymenium above a woven 
filamentous area like a hypothecium of a lichen apothecium 
(Brodo et al., 2001). Nor do the internal bodies of Hallidaya 
have well defined margins like those of lichen apothecia 
(Brodo et al., 2001). Hallidaya brueri is most like a foliose 
lichen with a prothallus (distinct margin of unlichenized 
tissue), and its central depressions are comparable with diffuse 
reproductive organs such as soredia or isidia.

IMPLICATIONS FOR CAMBRIAN EVOLUTION 
AND ECOLOGY

The fossil assemblage described here now allows 
visualization of an earliest Cambrian coastal landscape that 
was far from barren of life (Fig. 9). In the terminology of 
Retallack (1992) basal Cambrian vegetation of Fishtrap 
Lake was a polsterland, a vegetation formation of clumps 
of non–vascular plants or lichens. It can also be described 
as a rugose biological soil crust (Belnap, 2003), or as a 
perimorphic microbiotic soil crust (Eldridge & Greene, 
1994). It was neither a smooth and subterranean microbial 
earth (Retallack, 1992), smooth biological soil crust (Belnap, 
2003), nor cryptomorphic microbiotic soil crust (Eldridge 
& Greene, 1994). Nor was it dotted with large plants as in a 
brakeland (Retallack, 1992), pinnacled or rolling biological 
soil crust (Belnap, 2003), or hypermorphic microbiotic 
soil crust (Eldridge & Greene, 1994). Polsterlands are not 
only intermediate in ecological successional colonization 
of bare surfaces (Eldridge & Greene, 1994), but also likely 
evolutionary intermediates in the colonization of land on 
geological time scales (Retallack, 1992).

The assemblage of Arumberia, Noffkarkys and Hallidaya 
described here was a widespread terrestrial community during 
both Ediacaran and Cambrian. In addition to Fishtrap Lake, 
red–beds with Arumberia are known from 13 regions: (1) 
Ediacaran, Maihar Sandstone, near Maihar and Khoh, India 
(Kumar & Pandey, 2008); (2) Ediacaran Jodhpur Sandstone 
near Khatu, India (Kumar & Ahmad, 2012; Srivastava, 2014); 
(3) Ediacaran, Bonney Sandstone, Brachina Gorge, Flinders 
Ranges, South Australia (Bland, 1984); (4) Ediacaran, Grant 
Bluff Formation near Mt Skinner, Northern Territory, Australia 
(Wade, 1969; Retallack & Broz, 2020); (5) Ediacaran, Grant 
Bluff Formation at Central Mount Stuart, Northern Territory, 

Australia (Retallack & Broz, 2020); (6), Ediacaran Arumbera 
Sandstone at Ross River, Valley Dam and Hargrave Lookout, 
Northern Territory, Australia (Glaessner & Walter, 1975; 
Mapstone & McIlroy, 2006; Retallack & Broz, 2020); (7) 
Ediacaran Ust Sylvitsa, Chernyi Kamen and Zigan formations 
of the Ural Mountains, Russia (Becker, 1980, 1985; 
Kolesnikov et al., 2012); (8) Ediacaran Moshakov Formation 
near Artyugino, east Siberia (Liu et al., 2013); (9) Ediacaran 
Gibbett Hill Formation of Newfoundland, Canada (Bland, 
1984); (10) late Ediacaran or Early Cambrian, Synalds, 
Lightspout, and Bridges formations near Church Stretton, 
England (Bland, 1984; McIlroy et al., 2005); (11) Early 
Cambrian, Billy Creek Formation, Flinders Ranges, South 
Australia (Bland, 1984; Retallack, 2008); (12) late Ediacaran 
or early Ordovician, Rozel Conglomerate on the British 
Channel island of Jersey (Bland, 1984; Went, 2005); and 
(13) late Ediacaran or early Ordovician Pluorivo Formation 
near Erquy and Bréhec, France (Bland, 1984). An additional 
3 localities for Arumberia in Namibia, China and Sweden are 
uncertain as to identity of the fossils or the facies in which 
they were found (Bland, 1984).

At Fishtrap Lake the vendobionts Arumberia, Noffkarkys 
and Hallidaya are abundant on selected horizons, and there 
is no evidence that they interacted with marine trace fossils 
Manykodes pedum, Bergaueria hemispherica, Didymaulichnus 
lyelli, and Torrowangea within the intervening beds (Fig. 2). 
Chemical and magnetic susceptibility indications of oxidation 
in the vendobiont surfaces did not extend to the beds with 
trace fossils (Retallack, 2013a). This is interpreted here as 
estuarine supratidal flats of near–marine sediments colonized 
by vendobionts (Fig. 9).

Evidence of interaction in vendobiont communities is 
rare globally (Mitchell et al., 2019). One example of a trail 
ploughing through a Dickinsonia has been interpreted as 
scavenging of a buried body (Gehling & Droser, 2018), but 
the fossil has good relief unlike known decayed and deflated 
Dickinsonia (Retallack, 2007). The clear mounded levees 
on either side of the “burrow” are evidence that this is a 
surface trail, and evidence of herbivory or fungivory rather 
than scavenging. No such interaction between vendobionts 
and animals was seen in large collections of Cambrian 
fossils from Fishtrap Lake, or Ediacaran localities in central 
Australia (Retallack & Broz, 2020). The rarity of vendobiont 
interactions has been quantified by Mitchell & Butterfield 
(2018) and Mitchell et al. (2019). These largely sessile 
communities were more like plant and lichen communities 
than benthic marine communities. Similarly, Darroch et 
al. (2018a) demonstrate high rank order differentiation in 
Ediacaran communities. This is also similar to communities of 
lichens (Kuusinen, 1994; Dietrich & Scheidegger, 1997; Thor 
et al., 2010) and plants (Ulrich et al., 2016). Beta diversity in 
Ediacaran communities is higher than in any known benthic 
marine community, either modern or fossil (Finnegan et al., 
2019), and more like terrestrial communities (Kessler et al., 



 RETALLACK.—INTERNAL STRUCTURE OF CAMBRIAN VENDOBIONTS IN MONTANA, USA 15

2009; Fernandez–Going et al., 2013). There are multiple 
other lines of evidence that some vendobiont communities 
were non–marine: soil–like mineral and grain size modal 
variation within beds below them (Retallack, 2012), soil–
like tau analysis depletions (Retallack, 2013a), δ18O–δ13C 
correlation within carbonate nodules (Retallack, 2016c; Broz 
et al., 2021), low boron assay (Retallack, 2020), high Ge–Si 
ratios of early diagenetic silica cement (Retallack, 2017), and 
eolian interbeds inferred from granulometry (Retallack, 2019; 
McMahon et al., 2020).

The Ediacaran–Cambrian transition has been envisaged 
as an “agronomic revolution” of marine burrowing organisms 
destroying and replacing marine Ediacaran matgrounds 
(Seilacher & Pflüger, 1994; Oji et al., 2018). One way to 
interpret the Cambrian co–occurrence of interbeds alternating 
with marine trace fossils and vendobionts at Fishtrap Lake, 
would be as an intermediate stage in a protracted transition 
from Ediacaran matgrounds to fully bioturbated marine 
siltstones (Buatois et al., 2014; Shahkarami et al., 2017; 
Laing et al., 2019). This view is difficult to maintain in view 
of the geochemical and magnetic susceptibility evidence 
(Retallack, 2013a) that the vendobionts were not on microbial 
submarine matgrounds, but well drained polsterlands. Nor 
does evidence from Fishtrap Lake support the idea that 
marine fossils destroyed Ediacaran marine matgrounds as 
a terminal Ediacaran catastrophe, or dual late Ediacaran 
catastrophes (Schiffbauer et al., 2016; Darroch et al., 2018a; 
Buatois et al., 2018). The Arumberia–Noffkarkys–Hallidaya 
community of Fishtrap Lake, and many other localities listed 
above are evidence that this community did not go extinct 
at the end of the Ediacaran, and may have persisted into 
the Ordovician (Bland, 1984; Went, 2005; Budd & Jensen, 
2017). Other vendobionts Rutgersella and Protonympha 
persisted in intertidal to terrestrial habitats in the Silurian 
(Retallack, 2015a) and Devonian (Retallack, 2018). Thus 
terrestrial “Mattresslands” of vendobionts (Retallack & Broz, 
2020) were unaffected by the evolution and intensification of 
burrowing organisms of marine “Wormworld” (Schiffbauer 
et al., 2016). Unfossiliferous Cambrian microbial matgrounds 
(Shahkarami et al., 2017; Laing et al., 2019) are additional 
evidence that these kinds of environments persisted 
(Grazhdankin & Gerdes, 2007; Kolesnikov et al., 2012), 
and were not completely eradicated by evolving marine 
bioturbation during the earliest Cambrian.

An alternative to the idea of marine diversification 
through burrowing is the Ediacaran “savanna hypothesis” 
(Budd & Jensen, 2017; Mitchell et al., 2020), which 
despite the terrestrial name, refers to the way in which large 
unskeletonized marine fossils created heterogeneous habitats 
replacing more uniform earlier marine matgrounds. Budd and 
Jensen (2017) considered vendobionts key heterogeneities 
for this change, but if vendobionts were terrestrial creatures 
as is apparent in this study and others (Retallack 2013b, 
2016b, 2020), the marine savanna hypothesis would be more 

likely due to Ediacaran sea weeds, which did indeed grow 
in size and complexity (Bykova et al., 2020; Del Cortona et 
al., 2020). Reconstruction of the widespread Ediacaran and 
Cambrian Arumberia–Noffkarkys–Hallidaya assemblage as 
ground–hugging communities (Fig. 9), suggests that titles 
such as “Garden of Ediacara” (McMenamin, 2000), and 
“Underground Vendobionta” (Grazhdankin & Seilacher, 
2002), were descriptions rather than metaphors.
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