Significance of mesosporium in taxonomic resolution of fossil megaspores

NEERJA JHA AND RAJNI TEWARI

Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India.
Email: neerjajha@yahoo.co.uk, rajni.tewari@gmail.com

(Received 15 May, 2007; revised version accepted 07 July, 2009)

Heterospory—formation of two kinds of spores, viz. mega- and microspores—is a significant phenomenon in the evolutionary history of early land plants. Fossil microspores and megaspores are differentiated on the basis of their respective sizes. Generally, spores more than 200 µm are regarded as megaspores (Zernndt, 1937).

Dispersed megaspores are circumscribed on the basis of type of megaspore, i.e., alete or trilete, shape (triangular, circular, oval), contact area and arcuate ridges, characters of wall layers (Pant & Srivastava, 1961, 1962, 1965; Bharadwaj & Tiwari, 1970; Pant & Mishra, 1986). Outer wall layer, i.e., exosporium is variously sculptured and is characterized by different types of ornamentations, viz. grana, bacula, coni, verrucae, setae and spines. Spines may be simple, bifurcate, multifurcate, straight, curved or hook-like. Inner wall layer is mesosporium. It has also been called as the inner sac, basal lamina, inner body or nexine by different workers (Pant & Mishra, 1986 and references cited therein).

The mesosporium is attached only on the proximal side with the exosporium leaving a cavity or open space all around. Mesosporium (mesospore) was introduced by Fitting (1900) in the megaspores of modern representatives of the genera Isoetes and Selaginella. It is mostly a hyaline sac-like structure which may be circular, oval or triangular in shape, with or without cushions (Fig. 1). Cushions have been variously described as raised circular/knobbed/pit-like structures.

When present, these may be arranged in a single row, trigonally in multiple rows or irregularly along the triradiate mark.

In dispersed fossil megaspores mesosporium was first identified and described in detail by Høeg et al. (1955) in the genus Duosporites congoensis. This taxon was created on the basis of presence of double wall layers and cushions/pits in a single row along triradiate mark on mesosporium. Since the institution of D. congoensis, mesosporium has been considered as important taxonomic character for the identification of megaspores and various genera have been proposed by various workers, viz., Kar (1968), Bharadwaj & Tiwari (1970), Lele & Srivastava (1983), Pant & Srivastava (1961, 1962, 1965), Pant & Mishra (1986), Jha & Srivastava (1984), Maheshwari & Tewari (1989), Tewari & Maheshwari (1992), Tripathi (1997, 1998a, b, 1999), Tripathi & Mishra (1997, 2001), Patil & Premchand (2001), Srivastava & Tewari (2002a, b, 2004), Jha & Tewari (2003), Tewari et al. (2004), Jha et al. (2006), Tewari et al. (2007) and Tewari et al. (2009). The study of mesosporium is not only of immense significance in determining the range of structural variability in various taxa (Fig. 1) but also provides a basis for determination of evolutionary pattern in megaspore development thereby in understanding the development/evolution of ovule/seed habit. Evolutionary history of land plants suggests that heterosporous land plants gave rise to seed plants (Sprone, 1965). One of the possibilities is that
Fig. 1—Megaspore taxa showing different kind of mesosporia. e - exosporium, m - mesosporium, c - cushions
mesosporium in megaspores of these heterosporous plants might have developed as ovule and the attachment point of exosporium with mesosporium by means of cushions was probably a higher stage of evolution which might have evolved as the stalk of ovule in seed plants.

Presence of mesosporium has always been considered as an important character for identification of megaspores (Pant & Srivastava, 1962; Stubblefield & Rothwell, 1981; Tryon & Lugard, 1976; McCallum & Villar de Seoane, 1976; Archangelsky & Villar de Seoane, 1990). Occurrence of mesosporium has also been recorded in megaspores found in attachment with Selaginella harrisiana from Kungurian (Permian) of Australia (Townrow, 1968).

Recently, the taxonomy proposed by Glasspool (2003) for Permian Gondwana megaspores is based on exosporium characters only. It does not include the features of the inner body or mesosporium. He has omitted the study of mesosporium character on the pretext of rapid identification of Gondwana megaspores and based his identification on SEM studies alone discarding the character examined under light microscopic studies. SEM study has its own limitations as it shows only external characters. According to Glasspool, study of mesosporium is time consuming, is a lengthy process and involves “destructive maceration”. Presence of inner body/mesosporium was accordingly not given any importance for the morphographic grouping or classification, and megaspores with and without a mesosporium have been included within the same genus. However, it is imperative to examine the mesosporium features in order to understand the basic principles of plant evolution (Grauvogel-Stamm & Lugard, 2001; Srivastava, 2000). SEM studies are applicable only to the surface structures, whereas, studies under transmitted light, though time taking, involve LO analysis and provide detailed, comprehensive, complete and more reliable study of both internal and external characters of fossil megaspores. Internal characters are equally important as the external characters for complete description/understanding of any organism and cannot be ignored on the grounds of time consumption for the study. Accordingly, the technique used for study of megaspores includes their study in dry condition under incident light for exosporium characters and involves careful, controlled, differential maceration for study of mesosporium in wet condition with care and caution.

Glasspool (2003) has merged Indian megaspores without considering original specimens which are based on external (exosporium) and internal (mesosporium) characters and clearly show distinct mesosporia. The study of a large number of megaspores from different Indian Gondwana basins and type specimens available in the repository of Birbal Sahni Institute of Palaeobotany, Lucknow, indicates that both exosporium and mesosporium are important features and can very well be studied in transmitted light after treating the megaspores with suhltz’s solution with mild alkali. Almost all the Gondwana megaspores are identified and described on the basis of external morphological features. The importance of mesosporium in megasporid taxonomy cannot be ignored. Moreover, Glasspool has himself cited the importance by showing the mesosporium in his new species Singhisporites tubbus (Glasspool, 2000, Pl.3, Fig.7).

SEM studies of torn megaspores and section of megaspores of many extant species, viz. Isoetes coromandelina Linnaeus (Bajpai & Maheshwari, 1985) and Selaginella delicatula Desv., S. inequalifolia Hook. & Grev., S. monospora, S. nummularia and S. plumosa (Bajpai & Maheshwari, 1986) have clearly shown occurrence of two distinct layers, i.e., exosporium and mesosporium. SEM and TEM studies by Archangelsky & Villar de Seoane (1990) have also revealed mesosporium in megaspores of Verrutriletes. Additionally, they too have discussed the significance of mesosporium in megasporid taxonomy.

Records of megafossils of heterosporous early land plants are sporadic in Indian Gondwana. Megaspores are the only indicators/representatives of these plants. For a comprehensive study and proper understanding of the diversity of the heterosporous early land plants, it is imperative to use all the taxonomical parameters available in the megaspores. Realising the importance of mesosporium in systematics of megaspores, the study
of mesosporium character in megaspores along with all
the other characters is emphasized in the present communication.

Acknowledgements—We thank Dr N.C. Mehrotra, Director,
Birbal Sahni Institute of Palaeobotany for granting permission
to present the paper in the Colloquium on
Micropalaeontology and Indian Stratigraphy at
Vishakhapatnam and permission to publish the paper. We are also thankful to, Prof G.K. Srivastava, Former Head,
Botany Department, Allahabad University, Dr S.C.
Srivastava, Former Scientist ‘F’, Birbal Sahni Institute of
Palaeobotany, Lucknow and Dr K.P.N. Kumaran, Agharkar
Research Institute, Pune for critically going through the
manuscript and giving useful suggestions.

REFERENCES


Bajpai U & Maheshwari HK 1985. SEM studies on the megaspores of Isoetes coromandelina. Phytomorphology
34: 226-231.

Bajpai U & Maheshwari HK 1986. SEM study of megaspore sporoderm of some Indian Selaginellas. Phytomorphology
36: 43-51.


Fitting H 1900. Bau und Entwicklungsgeschichte der in
Makrosporen von Isoetes und Selaginella und ihre
bedeutung fur die Kenntniss des Wachsthums pflanzlicher
Zellmembranen. Botanische Zeitung 58: 107-156

Glasspool IJ 2000. Megaspores from the Late Permian, Lower
Whybrow coal seam, Sydney Basin, Australia. Review of

Glasspool IJ 2003. A review of Permian Gondwana megaspores,
with particular emphasis on material collected from coals of
the Witsbank Basin of South Africa and Sydney. Review of

Grauvogel-Stamm L & Lugardon B 2001. The Triassic lycopsids
Pleuromeia and Annalepis. Relationship, Evolution, and
origion. American Fern Journal 91: 115-149.

Heeg OA, Bose MN & Manum S 1955. On double walls in
fossil megaspores, with description of Duosporites congoensis n.gen n. sp. Nytt Magazin for Botany 4: 101-
107.

Jha Neerja & Srivastava SC 1984. Occurrence of megaspores
in the Kamthi Formation, Godavari Valley coalfields, Andhra

Jha Neerja & Tewari R 2003. Megaspores from Raniganj
Formation of Mailaram area, Godavari Graben, Andhra
Pradesh, India. Phytomorphology 53: 141-156.

of megaspores in Lower Gondwana sediments of Gudnala

Kar RK 1968. Palynology of Barren Measures sequence from
Jharia Coalfield, Bihar, India-3. Studies on Megasporas-
Palaeobotanist 16 : 292-300.

Lele KM & Srivastava AK 1983. Morphological and structural
studies on some Barakar megaspores. Palaeobotanist 31: 1-
12.

Maheshwari HK & Tewari R 1989. Ancorisporites vekatachalaev
sp. nov from the Lower Permian of Bihar, India.

Pant DD & Mishra SN 1986. On Lower Gondwana megaspores
from India. Palaeontographica B198 : 13-73

Pant DD & Srivastava GK 1961. Structural studies on Lower
Gondwana megaspores. Part I- Specimens from Talchir

Pant DD & Srivastava GK 1962. Structural studies on Lower
Gondwana megaspores. Part II- Specimens from Brazil and
Mhukuru Coalfield, Tanganyika. Palaeontographica 111: 79-
81.

Pant DD & Srivastava GK 1965. Some Lower Gondwana

Ancorisporites from the Barakar Formation (Lower Permian)
of Gondvana Valley Coalfield, Andhra Pradesh, India. In:
Dutta AB, Mukhopadhyay A, Mitra SN, Raha PK, Chakraborti NC & Banerjee SN (Editors)—Geological

Sporne KR 1965. The morphology of Gymnosperms. The
structure and evolution of primitive seed plants.

Srivastava AK & Tewari R 2002a. Two new types of megaspores
from Permian Gondwana Sequence of India. Permophiles

Srivastava AK & Tewari R 2002b. A new gulate megasporas

Srivastava AK & Tewari R 2004. Megaspore assemblage from
Pench Valley Coalfield, Madhya Pradesh, India. Geophytology 34: 57-64.

Srivastava GK 2000. Further remarks on the evolution of Isoetes
L. through the ages. In : Chauhan DK (Editor)—Recent
vol.: 81-87. Botany Department, Allahabad University,
Allahabad.

Stubblefield SP & Rothwell GW 1981. Embryology and


