Palaeoflood hydrology of the fluvial continental records of western India: A synthesis

Authors

  • L.S. Chamyal Department of Geology, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, India
  • Alpa Sridhar Department of Geology, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, India

DOI:

https://doi.org/10.54991/jop.2021.23

Keywords:

Palaeoflood hydrology, Fluvial continental records, Regime–based estimation, Palaeodischarge, Western India

Abstract

Palaeoflood hydrology has emerged as an important tool to infer quantitative and qualitative aspects of ungauged floods based on their physical evidence. Palaeoflood studies in India have largely been undertaken in the rivers of Peninsular India, western India, Ganga plains and the Himalayas to determine the magnitude and age of extreme floods and their connection to variations in the monsoon intensity. Usually, the alluvial domains are unfavourable for the occurrence and preservation of flood deposits and related discharge estimation. However, the alluvial rivers of western India owing to their semi–confined banks comprising late Pleistocene sediments provide an opportunity for investigating both, the high magnitude flood events as well as average flow conditions. In this synthesis we concisely review the recent palaeohydrological studies in western India in terms of flood magnitude, occurrence of extreme events and its relation to the southwest monsoon variability over various time scales. Based on palaeo–fluvial reconstructions, the sedimentation pattern during late Pleistocene appears to be related to changes in channel gradient and the water surface width rather than to discharge variability. On the other hand, the aggradation in channels during early Holocene was largely controlled by the huge sediment influx and the incision that followed was in response to the increase in the discharge and competence of the river flow. The slackwater records from the bedrock channels have revealed that the large magnitude flood events occurred during wet climate phases during the last two millennia. A clustering of high magnitude events at climatic transitions and arid periods during mid–late Holocene has been surmised. Further the flood associated deposits delimited within Quaternary fluvial landforms and channel morphology are vital as these allow quantification of past flood discharges, velocities and stage levels and thus improve the future flood predictions.

सारांश

पुराबाढ़ जलीय विज्ञान, भौतिक प्रमाणों के आधार पर अविभाजित बाढ़ के मात्रात्मक और गुणात्मक पहलुओं का अनुमान लगाने के लिए एक महत्वपूर्ण उपकरण के रूप में उभरा है। भारत में पुरापाषाण अध्ययन बड़े पैमाने पर प्रायद्वीपीय भारत, पश्चिमी भारत, गंगा के मैदानों और हिमालय की नदियों में किया गया है ताकि अत्यधिक बाढ़ की तीव्रता और आयु और मानसून की तीव्रता में भिन्नता के संबंध का निर्धारण किया जा सके। आम तौर पर, जलोढ़ क्षेत्र बाढ़ जमाव और संबंधित निर्वहन अनुमान की घटना और संरक्षण के लिए प्रतिकूल होते हैं। हालाँकि, पश्चिमी भारत की जलोढ़ नदियाँ अपने अर्ध-सीमित बैंकों के कारण देर से प्लीस्टोसीन अवसादों से युक्त हैं, जो उच्च तीव्रता वाली बाढ़ की घटनाओं के साथ-साथ औसत प्रवाह की स्थिति दोनों की जाँच करने का अवसर प्रदान करती हैं। इस संश्लेषण में हम पश्चिमी भारत में बाढ़ परिमाण, चरम घटनाओं की घटना और विभिन्न समय के पैमाने पर दक्षिण-पश्चिम मानसून परिवर्तनशीलता के संबंध में हाल के पैलियोहाइड्रोलॉजिकल अध्ययनों की संक्षिप्त समीक्षा करते हैं। पुरा-नदी पुनर्निर्माणों के आधार पर, प्लीस्टोसिन के अंत के दौरान अवसादन प्रक्रिया, निर्वहन परिवर्तनशीलता के बजाय चैनल ढाल में परिवर्तन और पानी की सतह की चौड़ाई से संबंधित प्रतीत होता है। दूसरी ओर, प्रारंभिक होलोसीन के दौरान चैनलों में वृद्धि को बड़े पैमाने पर तलछट के प्रवाह द्वारा नियंत्रित किया गया था जो की नदी के प्रवाह के निर्वहन और क्षमता में वृद्धि के कारण था। बेडरॉक चैनलों से सुस्त पानी के रिकॉर्ड से पता चला है कि पिछली दो सहस्राब्दियों के दौरान आद्र जलवायु चरणों के दौरान बड़ी मात्रा में बाढ़ की घटनाएं हुईं। मध्य एवं अंतिम होलोसीन के दौरान जलवायु परिवर्तन और शुष्क अवधि में उच्च परिमाण की घटनाओं का समूहन किया गया है। इसके अलावा क्वाटरनरी नदीय लैंडफ़ॉर्म और चैनल आकृति विज्ञान के भीतर बाढ़ से जुड़े अवसादी जमाव महत्वपूर्ण हैं क्योंकि ये पिछले बाढ़ के निर्वहन, वेग और चरण के स्तर की मात्रा का निर्धारण करने में मददगार होते हैं और इस प्रकार भविष्य में बाढ़ के सटीक पूर्वानुमान में सुधार करते हैं।

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Baker VR 1987. Palaeoflood hydrology and extraordinary flood events. Journal Hydrology 96: 79-99. DOI: https://doi.org/10.1016/0022-1694(87)90145-4

Baker VR 2008. Paleoflood hydrology: Origin, progress, prospects. Geomorphology 101: 1–13. DOI: https://doi.org/10.1016/j.geomorph.2008.05.016

Baker VR, Ely LL Enzel Y & Kale VS 1995. Understanding India’s Rivers: Late Quaternary palaeofloods, hazard assessment and global change. In: Wadia S, Korisetter R & Kale VS (Editors), Quaternary Environments and Geoarchaeology of India. Memoir Geological Society of India 32: 61-77.

Benito G, Harden TM & O’Connor J 2020. Quantitative Palaeoflood Hydrology in the Treatise on Geomorphology https://doi.org/10.1016/B978-0-12-409548-9.12495-9 DOI: https://doi.org/10.1016/B978-0-12-409548-9.12495-9

Central Water Commission 2012. Integrated Hydrological Data Books for Unclassified River Basins India, New Delhi: 158-167.

Chamyal LS & Juyal N 2008. Late Quaternary continental studies in parts of India: implications for monsoon variability. Journal Geological Society of India 71: 611-629.

Chamyal LS, Maurya DM & Rachna Raj 2003. Fluvial systems of the drylands of western India: a synthesis of Late Quaternary environmental and tectonic changes. Quaternary International 104: 69–86. DOI: https://doi.org/10.1016/S1040-6182(02)00136-2

Chamyal LS, Khadkikar AS, Malik JN & Maurya DM 1997. Sedimentology of the Narmada alluvial fan western India. Sedimentary Geology 107: 263-279. DOI: https://doi.org/10.1016/S0037-0738(96)00030-9

Costa JE 1983. Paleohydraulic reconstruction of flash- flood peaks from boulder deposits in the Colorado Front Range. Geological Society of America Bulletin 94: 986–1004. DOI: https://doi.org/10.1130/0016-7606(1983)94<986:PROFPF>2.0.CO;2

Ely LL & Baker VR 1985. Reconstructing palaeoflood hydrology with slack water deposits. Physical Geography 6: 103–126. DOI: https://doi.org/10.1080/02723646.1985.10642266

Ely LL, Enzel Y, Baker VR, Kale VS & Mishra S 1996. Changes in the magnitude and frequency of late Holocene monsoon floods on the Narmada River, central India. Geological Society of America Bulletin 108: 1134-1148. DOI: https://doi.org/10.1130/0016-7606(1996)108<1134:CITMAF>2.3.CO;2

Etheridge FG & Schumm SA 1978. Reconstructing paleochannel morphological and flow characteristics: methodology, limitations and assessment. In: Miall A D (Ed.) Fluvial Sedimentology Canadian Society of Petroleum Geologists Memoir 5: 703–721.

Goswami K, Rawat M, Jaiswal M & Kale VS 2019. Luminescence chronology of late Holocene palaeofloods in the upper Kaveri basin, India: An insight into the climate–flood relationship. The Holocene 29(6): 1094– 1104. DOI: https://doi.org/10.1177/0959683619831436

Gupta A 1993. The changing geomorphology of the humid tropics. Geomorphology 7: 165-186. DOI: https://doi.org/10.1016/B978-0-444-89971-2.50012-2

Gupta A, Kale VS & Rajaguru SN 1999. The Narmada River, India- through space and time. In: Miller AJ, Gupta AZ (Editors) Varieties of Fluvial Form Wiley Chichester 114–143.

Jain V & Sinha R 2003. Evaluation of geomorphic control on flood hazard through Geomorphic Instantaneous Unit Hydrograph. Current Science 85 (11): 1596-1600.

Juyal N, Kar A, Rajaguru SN & Singhvi AK 2003. Luminescence chronology of aeolian deposition during the Late Quaternary on the southern margin of Thar Desert, India. Quaternary International 104: 87–98. DOI: https://doi.org/10.1016/S1040-6182(02)00137-4

Juyal N, Chamyal LS, Bhandari S, Bhushan R & Singhvi AK 2006. Continental record of the southwest monsoon during the last 130 ka: evidence from the southern margin of the Thar Desert, India. Quaternary Science Reviews 25: 2632-2650. DOI: https://doi.org/10.1016/j.quascirev.2005.07.020

Kale VS 2003. Geomorphic effects of monsoon floods on Indian rivers. Natural Hazards 28: 65-84. DOI: https://doi.org/10.1007/978-94-017-0137-2_3

Kale VS 2008. Palaeoflood hydrology in the Indian Context. Journal Geological Society of India 71: 56-66.

Kale VS, Mishra S & Baker VR 2003. Sedimentary records of palaeofloods in the bedrock gorges of the Tapi and Narmada rivers, central India. Current Science 84: 1072-1079.

Kale VS, Ely LL, Enzel Y & Baker VR 1994. Geomorphic and hydrologic aspects of

monsoon floods on the Narmada and Tapi Rivers in central India. Geomorphology 10, 158-168.

Kale VS, Ely LL, Enzel Y & Baker VR 1996. Palaeo and historical flood hydrology, Indian peninsula. In. Global continental changes: the context of Palaeohydrology (Branson J, Brown AG, Gregory KJ Editors) Geological Society Special publication 115: 155-163. DOI: https://doi.org/10.1144/GSL.SP.1996.115.01.12

Kale VS, Singhvi AK, Mishra PK & Banerjee D 2000. Sedimentary records and luminescence chronology of Late Holocene palaeofloods in the Luni River, Thar Desert, northwest India. Catena 40: 337–358. DOI: https://doi.org/10.1016/S0341-8162(00)00091-6

Kale V, Achyuthan H, Jaiswal M & Sengupta S 2010. Palaeoflood Records from Upper Kaveri River, Southern India: Evidence for Discrete Floods during Holocene. Geochronometria 37: 49–55. DOI: https://doi.org/10.2478/v10003-010-0026-0

Knox JC 1985. Responses of floods to Holocene climatic change in the upper Mississippi Valley. Quaternary Research 23: 287-300. DOI: 10.1016/0033-5894(85)90036-5 DOI: https://doi.org/10.1016/0033-5894(85)90036-5

Komar PD 1989. Flow-competence evaluations of the hydraulic parameters of floods: An assessment of the technique. In: Beven K and Carling P (Editors) Floods: Hydrological, Sedimentological and Geomorphological Implications: 107–134. New York: Wiley.

Krishnamurthy CKB, Lall U & Kwon H 2009. Changing Frequency and Intensity of Rainfall Extremes over India from 1951 to 2003. Journal of Climatology 22: 4737-4746. DOI: https://doi.org/10.1175/2009JCLI2896.1

Macklin MG, Benito G, Gregory KJ, Johnstone E, Lewin J, Michcynska DJ, Soja L, Starkel L & Thorndycraft VR 2006. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66: 145–154. DOI: https://doi.org/10.1016/j.catena.2005.07.015

Maurya DM, Rachna R & Chamyal LS 2000. History of tectonic evolution of Gujarat Alluvial Plains, Western India during Quaternary: A Review. Journal Geological Society of India 55: 343-366.

Merh SS & Chamyal LS 1997. The Quaternary Geology of Gujarat Alluvial Plain. Indian National Science Academy, New Delhi: 1- 98.

Patton P 1988. Geomorphic response of streams to floods in the glaciated terrain of southern New England. In Baker V, Kochel R & Patton P (Editors) Flood Geomorphology, Wiley, New York, 261- 277.

Reinfelds I 1995. Evidence for High Magnitude Floods along the Waimakariri River, South Island, New Zealand. Journal of Hydrology (New Zealand): 95-110.

Schumm SA 1968. River adjustment to altered hydrologic regime- Murrumbidgee River and palaeochannels, Australia. US Geological Survey Professional Paper 598. DOI: https://doi.org/10.3133/pp598

Sharma S, Shukla AD, Bartarya SK, Marh BS & Juyal N 2017. The Holocene floods and their affinity to climatic variability in the western Himalaya, India. Geomorphology 290: 317-334. DOI: https://doi.org/10.1016/j.geomorph.2017.04.030

Sharma CP, Chahal P, Kumar A, Singhal S, Sundriyal YP, Ziegler AD, Agnihotri R, Wasson RJ, Shukla UK & Srivastava P 2021. Late Pleistocene− Holocene flood history, flood-sediment provenance and human imprints from the upper Indus River catchment, Ladakh Himalaya. GSA Bulletin; https://doi.org/10.1130/B35976.1 DOI: https://doi.org/10.1130/GSAB.S.14251610

Shukla UK & Singh IB 2004. Signatures of palaeofloods in sandbar-levee deposits, Ganga Plain, India. Journal Geological Society of India 64 (4): 455-460.

Singh A, Jain V, Danino M, Chauhan N, Kaushal RK, Guha S & Prabhakar VN 2021. Larger Floods of Himalayan Foothill Rivers Sustained Flows in the Ghaggar–Hakra Channel during Harappan Age. Journal of Quaternary Science: 1–17. DOI:10.1002/jqs.3320. DOI: https://doi.org/10.1002/jqs.3320

Sridhar A 2007a. A mid-late Holocene flood record from the alluvial reach of the Mahi River, western India, Catena 70: 330–339. DOI: https://doi.org/10.1016/j.catena.2006.10.012

Sridhar A 2007b. Mid-late Holocene hydrological changes in the Mahi River, arid western India. Geomorphology 88: 285-297. DOI: https://doi.org/10.1016/j.geomorph.2006.12.001

Sridhar A 2009. Evidence of a late-medieval mega flood event in the upper reaches of the Mahi

River basin, Gujarat Current Science, 96 (11): 1517-1520.

Sridhar A & Chamyal LS 2010. Sediment records as archives of the Late Pleistocene–Holocene hydrological change in the alluvial Narmada River basin, western India. Proceedings of Geologists’ Association 121: 195-202. DOI: https://doi.org/10.1016/j.pgeola.2010.01.001

Sridhar A & Chamyal LS 2018. Implications of palaeohydrological proxies on late Holocene Indian Summer Monsoon variability, western India. Quaternary International 479: 25-33. DOI: https://doi.org/10.1016/j.quaint.2017.11.049

Sridhar A, Chamyal LS & Patel M 2014. Palaeoflood record of high-magnitude events during historical time in the Sabarmati River, Gujarat. Current Science 107: 675-679.

Sridhar A, Chamyal LS, Battacharya F & Singhvi AK 2013. Early Holocene fluvial activity from the sedimentology and palaeohydrology of gravel terrace in the semi-arid Mahi River Basin, India. Jounal Asian Earth Science 66: 240–248. DOI: https://doi.org/10.1016/j.jseaes.2013.01.017

Sridhar A, Bhushan R, Balaji D, Band S & Chamyal LS 2016. Geochemical and Sr-Nd isotopic variations in palaeoflood deposits at mainstem - tributary junction, western India: implications on late Holocene flood events. Catena 139: 32-43. DOI: https://doi.org/10.1016/j.catena.2015.12.004

Sridhar A, Thakur B, Basavaiah N, Seth P, Tiwari P & Chamyal LS 2020. Lacustrine record of high magnitude flood events and climate variability during mid to late Holocene in the semiarid alluvial plains, western India. Palaeogeography Palaeoclimatology Palaeoecology 542: 109581. DOI: https://doi.org/10.1016/j.palaeo.2019.109581

Sridhar A, Laskar A, Prasad V, Sharma A, Tripathi J K, Balaji D, Maurya DM & Chamyal LS 2015. Late Holocene flooding history of a tropical river in western India in response to southwest monsoon fluctuations: A multi proxy study from lower Narmada valley. Quaternary International 371: 181-190. DOI: https://doi.org/10.1016/j.quaint.2014.10.052

Srivastava P, Kumar A & Chaudhary S 2017. Paleofloods records in Himalaya. Geomorphology 284: 17–30. DOI: https://doi.org/10.1016/j.geomorph.2016.12.011

Stokes M, Griffiths JS & Mather A 2012. Palaeoflood estimates of Pleistocene coarse grained river terrace landforms (Río Almanzora, SE Spain). Geomorphology 149–150: 11–26 DOI: https://doi.org/10.1016/j.geomorph.2012.01.007

Thomas PJ, Juyal N, Kale VS & Singhvi AK 2007. Luminescence chronology of late Holocene extreme hydrological events in the upper Penner River basin, South India. Journal Quaternary Science 22:747-753. DOI: https://doi.org/10.1002/jqs.1097

Wasson RJ, Sundriyal YS, Chaudhary S, Jaiswal MK, Morthekai P, Sati SP & Juyal N 2013. A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India. Quaternary Science Review 77: 156–166. DOI: https://doi.org/10.1016/j.quascirev.2013.07.022

Williams GP 1984. Palaeohydrologic equations for rivers. In. Costa JE, Fleisher PJ (Editors) Developments and Applications of Geomorphology. Springer-Verlag, Berlin, 343-367. DOI: https://doi.org/10.1007/978-3-642-69759-3_11

Wohl EE & Enzel Y 1995. Data for Palaeohydrology. In: Gregory KJ, Starkel L, Baker VR (Editors)—Global Continental Palaeohydrology. Wiley, Chichester: 23-59.

Downloads

Published

2021-09-10

How to Cite

Chamyal, L., & Sridhar, A. (2021). Palaeoflood hydrology of the fluvial continental records of western India: A synthesis. Journal of Palaeosciences, 70((1-2), 317–326. https://doi.org/10.54991/jop.2021.23