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ABSTRACT 

This paper presents a assessment of the Mesozoic Oceanic Anoxic Event (OAE) studies, 

carried out from India. It also provides a summary of the researches pursued on 

biostratigraphic, isotopic, and organic geochemical proxies for establishing Oceanic Anoxic 

Events (OAEs) from the Mesozoic sedimentary sequences of the Indian subcontinent. From 

Indian sedimentary basins, studies are available on OAE-1a, OAE-1b, OAE-1d, OAE-2, and 

OAE-3. From the Cauvery Basin records of OAE-1b, OAE-1d, OAE-2, and OAE-3 are 

available. From the Spiti Valley records are present of OAE-2 (Chikkim Formation) only, and 

the possibilities of late Valanginian Weissert Event (W-OAE), latest Hauterivian Faraoni Event 

(F-OAE) and OAE-1a are expected to be present in Giumal Formation. Nonetheless, the Black 

shale from Rudramata Shale, Jhuran Formation from Kutch basin indicate possible late Jurassic 

OAE, based on the character of sedimentary facies and organic geochemical results. There is 

also, possibility of OAE-1a and OAE-1b in the Ukra and Upper member of the Bhuj Formation. 

This paper aims to provide a comprehensive introduction on global and regional OAEs records 

from the Indian subcontinent and a significant window on available knowledge of these events 

in India and supply significant attention for the future research possibilities from the Indian 

landmass. 
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INTRODUCTION 

The Mesozoic Era (time span approx. 186 Ma) is an important and remarkable time period in 

the Earth’s history as it witness the rifting of the Pangaea Supercontinent and the opening-

spreading of the Atlantic and Indian oceans. Mesozoic era brackets the time interval 

sandwiched between two extreme events of biodiversity crisis i.e., the end Permian mass 

extinction (⁓ 252 Ma) marking the base of the Triassic period (start of the Mesozoic Era) and 

the Cretaceous-Paleogene mass extinction (around 66 Ma) marking the end of the Cretaceous 

period (end of Mesozoic Era). Each of extinction events record major change in atmosphere 

and ocean composition and it’s impact on bio-diversity (extinction-adoptation-radition) 

provide crucial information in understanding of anthropogenic climate change. The climate-

environment may influence by several factors including volcanic eruption, sea-level rise, ocean 

acidification, and anoxicity. However, it is difficult to record the sedimentalogical-

geochemical-paleontological data sets from a specific time frame at same tune throughout the 

globe, but study over geological time scale identified few catastropic events from isolated basin 

to quasi-global scale. 

The CO2 increase in the atmosphere affect the composition of ocean and atmosphere which 

reflect in sedimentary basin as changes in sediment dynamics-pattern, paleo-redox, pH of 

ocean, nutrient supply etc. These events are recognized as deposits of dark colored laminated 

shale, highly rich in organic carbon content and sulfides (Jenkyns, 2010). These events are 

Known as Oceanic Anoxic Events (OAEs) are widely documented from a single isolated basin 

to quasi-global scale and from shallow coastal zones to the deepest parts of the open ocean 

(Jenkyns, 2010; Schlangerand Jenkyns, 1976). 

In pelagic and neritic habitats, during periods of extreme greenhouse temperatures, three global 

OAEs (Toarcian-OAE, OAE 1a and OAE 2) are marked by a carbonate crisis. (Weissert et al., 

1998; Cobianchi and Picotti, 2001; Herrle and Mutterlose, 2003). In comparison with current 
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populations, the excess CO2 released from volcanoes during OAE prevented biocalcification 

in reef communities (Langdon et al., 2000), along with planktonic foraminifers (Barker and 

Elderfield, 2002) and calcareous Nannoplankton (Riebesell et al., 2000). After surplus CO2 

was drawn down by accelerated weathering and burial of organic matter, carbonate 

sedimentation restarted, and possibly the rate of nutrient delivery also slowed down. 

OAEs affected nannofossil productivity in different ways. Certain OAEs, have led to speciation 

events whereas others have caused extinction events. The Toarcian OAE and OAE1a, which 

are both preceded by a speciation event and do not exhibit extinctions, showing similar 

nannofossil evolutionary trends. Conversely, nannofossil assemblages during OAE2 are 

characterised by a turnover, in which new species emerge after a set of species vanished. 

Therefore, calcareous nannoplankton benefited from the environmental changes that occurred 

during the Aptian and Toarcian, which in turn encouraged diversification. Perhaps nannofloras 

suffered from far more harsh conditions during OAE2. 

The concept of the oceanic anoxic event was first introduced by Schlanger and Jenkyns (1976) 

and Jenkyns (1980). Total of nine episodes of global and regional OAEs are recorded during 

the Mesozoic era (Jenkyns, 2010; Leckie et al., 2002; Erba, 2004). The intense effect of climate 

change on global oceans has been studied from the geochemical signatures in carbon-rich dark 

black shale sequences deposited under an anoxic condition and representing a reducing 

environment (Schlanger and Jenkyns, 1976). These OAEs events recognized as intervals in the 

geological timescale which lasted for about a few 100-1000 years (Jenkyns, 2010).  

During an extensive volcanic eruption high concentrations of carbon dioxide released in the 

atmosphere and caused extreme warming effect. Due to the warm environment the solubility 

of oxygen in ocean water dropped and caused enhanced stratification (Leckie et al., 2002; 

Hesselbo et al., 2000; Beerling et al., 2002). This long term intense warming also caused huge 

continental weathering (Jenkyns, 2010; Jenkyns, 2003). The long term depletion of oxygen in 
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the ocean and high concentration of carbon dioxide, caused extinction of calcareous 

microorganisms in the oceans which lead to mass extinction events of calcareous 

phytoplanktons and zooplanktons in the geological past such as during K/Pg boundary (Keller 

et al., 2011 and references therein). Hence, a better understanding of the past catastrophe with 

the future prediction of climate and oceans could be achieved from OAE studies (Arthur and 

Schlanger, 1979; Jenkyns, 1999; Bottjer et al., 2001; Huber et al., 2002; Takashima et al., 

2006; Bralower, 2008). 

Several studies have demonstrated plenty of evidence of global and regional OAE’s in the 

Mesozoic sediments (Jenkyns, 2010; Leckie et al., 2002; Erba, 2004). These events are early 

Toarcian (Posidonienschiefer event, T‐OAE, ~ 183 Ma); early Aptian (Selli event, OAE-1a, ~ 

120 Ma; early Albian (Paquier event, OAE-1b, ~ 111 Ma) first recognized in the Vocontian 

Trough of southeast France (Bréhéret, 1985) and Cenomanian-Turonian (Bonarelli event, C/T 

OAE, OAE-2, ~ 93 Ma). Some events are recognized from the Tethyan realm (OAE-1c, OAE-

1d (Toolebuc event, late Albian Breistroffer event, (Arthur et al., 1990), the late Cretaceous 

Valanginian Weissert event (W-OAE)  and latest Hauterivian Faraoni Event (F-OAE) also 

demonstrated from the various Tethyan and Atlantic domain regions (Lini et al., 1992; Erba et 

al., 2004; Bornemann and Mutterlose, 2008; Brassell, 2009; Rodríguez-Tovar and Uchman, 

2017) and Coniacian-Santonian (OAE-3) (Arthur et al., 1990; Wagner et al., 2004). In addition 

Late Jurassic anoxic event (Nozaki et al., 2013; Arora et al., 2015; Carmeille et al., 2020; 

Rogov et al., 2020) and an Oxfordian-Kimmeridgian OAE (Martinez and Dera, 2015) also 

identified (Fig. 1).  
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During the Mesozoic time three global OAEs (i. Toarcian OAE or Jenkyns Event, ii. OAE 1a 

or Selli Event, iii. OAE 2 or Bonarelli Event) and six regional OAEs (OAE-W or Weissert 

Event, OAE-F or Faraoni Event, OAE 1b or Paquier Event, OAE 1c or Toolebuc Event, OAE 

1d or Breistroffer Event and OAE3 Coniacian-Santonian) are recorded. The global OAEs are 

associated with the warm conditions due to the high carbon dioxide levels related to the various 

volcanic activities. T-OAE has been attributed to the warming due to the excessive carbon input 

into the atmosphere potentially caused by volcanism from the Karoo-Ferrar Large Igneous 

Province, the thermogenic emission of 12C via intrusion of Karoo-Ferrar sills in Gondwanan 

Figure 1. Mesozoic Oceanic Anoxic Events plotted against geological time scale. 
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coal deposits (McElwain et al., 2005; Svensen et al., 2007), and/or the dissociation of methane 

gas hydrates (Hesselbo et al., 2000, Hesselbo et al., 2007; Kemp et al., 2005). 

OAE 1a has been attributed to the warm conditions resulted from the increased CO2 levels in 

the atmosphere which could possibly resulted from the volcanic activity on the the Ontong Java 

Plateau (OJP) in the Mid-Pacific. Studies also suggests volcanic activity in the Songliao Basin 

and northeast Asia possibly played an important role (Wang et al., 2016a).  

OAE-2 was linked to the high global temperatures associated with large igneous province (LIP) 

emplacements (Leckie et al., 2002) and elevated volcanic degassing (Arthur et al., 1985; Huber 

et al., 1995; Jones et al., 2021; Kuroda et al., 2007; Larson, 1991), and thus increased 

atmospheric CO2 concentrations (Forster et al., 2007; O’Brien et al., 2017; Robinson et al., 

2019; Sinninghe-Damsté et al., 2010). 

Regional OAEs are comparatively less studied for the causative mechanisms. While the role of 

volcanic activity is not established for the all regional OAEs, sea level changes, climate change 

could have played a key role in the formation of regional OAEs. 

The present paper contributes on the synthesis of various studies made Oceanic anoxic events 

(OAEs) recognized from the Indian sedimentary record. The OAEs recorded from the Indian 

basins are OAE-1b (Paquier event); OAE-2 (Bonarelli event); OAE-1d (Breistroffer event) and 

OAE-3 (Coniacian-Santonian). The paper also demonstrates the possible time slices and 

sediment succession from where OAE studies can be persued from Indian sub-continent. 
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INDIAN MESOZOIC SEQUENCES AND OAE RECORDS 

 

 

 

 

 

 

 

 

 

 

In India, Mesozoic sequences are well developed and sought great attention of the 

stratigraphers and the palaeontologist from worldwide (Medlicott, 1872; Matley, 1921; 

Brookfield and Westermann, 1982; Jadoul et al., 1990; Oloriz and Tintori, 1990; Fürsich et al., 

2018; Garzanti, 1992; Premoli Silva et al., 1992; Cariou et al., 1996; Fürsich, 1998; Whatley 

and Bajpai, 2000; Whatley et al., 2002; Bertle and Suttner, 2005; Alberti et al., 2019; Hart et 

al., 2001; Lukeneder et al., 2013; Galeet et al., 2019; Chopparapu and Rajanikanth,  2018; 

Krishna, 2017). These sequences in India are exposed in the northern (Laddakh, Spiti, 

Uttarakhand); western (Jaisalmer, Kutch); eastern (Rajmahal Basin and Assam-Arakan); 

central (Narmada-Son, Satpura and Rewa basins); and southern parts (Cauvery, Krishna-

Godavari, Palar, Mahanadi and Pranhita–Godavari basins) (Chopparapu and Rajanikanth, 

2018; Krishna, 2017). However, the marine exposures comprising OAEs can be only found in 

Figure 2. Marine and continental Mesozoic 

exposures in India (Modified after Chopparapo and 

Rajanikanth, 2018 ; Krishna, 2017). 
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Ladakh and Spiti Himalaya, Kutch, Jaisalmer and Cauvery basins (Fig. 2). The areas from 

which OAE studies are available and the possible areas for these studies are discussed below 

and complied in figure 3. 

 

Figure  3. Established Global and Regional Oceanic Anoxic events (OAEs) 

and  records from Indian Basins (Published events- green colour; Possible 

events- red colour). 
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Cauvery Basin 

The Cauvery Basin is a pericratonic rift basin along the eastern continental margin of the 

Peninsular India (Rangaraju et al., 1993; Madhavaraju et al., 2015). It comprises more than 

6000 m thick well preserved sediments ranging from Cretaceous to Paleocene. The sediments 

were deposited during two phases- (1) syn-rift phase which predominantly contains fluvial and 

lacustrine deposits and (2) post-rift phase consisting of shelf carbonates and marine shale 

(Reddy et al., 2013). Post-rift phase sediments are well exposed in the Ariyalur area 

(Madhavaraju et al., 2015). The Cretaceous and early Paleogene sediments are exposed in 

disconnected outcrops (Govindan, 2017); dipping towards east from bounding nonconformity 

with Archaean charnockitic crystalline basement (Sundaram et al., 2001). Mainly exposed in 

three areas: in the Ariyalur, Vriddhachalum and Pondicherry districts.The complete succession 

is well represented in the Ariyalur area. A total thickness of 2.5 km of the Cretaceous sediments 

are well preserved in the Ariyalur area (Sundaram et al., 2001). Blanford (1862) classified the 

Cretaceous sedimentary rocks of the Ariyalur area and divided them into three groups, the 

Uttatur, Trichinopoly, and Ariyalur groups. The Uttatur Group overlies the Archean basement. 

It comprises terrestrial, paralic and shallow marine strata (Sundaram et al., 2001). Nagendra 

and Reddy (2017) divided the Uttatur Group into three formations- Terani, Dalmiapuram and 

Karai formations (Fig. 4). 
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The Trichinopoly Group comprises 

Garudamangalam Fm., which is 

further divided into three members- 

Kulakkalnattam Sandstone, 

Anaipadi Sandstone and Saturbugan 

Sandstone members (Fig. 4). 

The Ariyalur Group is divided into 

three formations- Sillakkudi, 

Kallankurichchi and Kallamedu. 

The Sillakkudi Fm. is further 

divided into three members- 

Kilpavalur Grainstone, Sillakkudi 

Sandstone and Kaller 

Conglomerate members. The 

Kallankurichchi Fm. Comprises Kallankurichchi Limestone Mb. The Kallamedu Fm. Is 

divided into two members-Ottakovil Sandstone and Kallamedu Sandstone (Reddy et al., 2013) 

(Fig. 4). 

In the Uttatur Group, the Terani Fm. (Berriasian-Aptian) comprises fluvial and marine 

sediment deposits during the first marine worldwide transgression inlate Aptian to early Albian 

during the Cretaceous period (Reddy et al., 2013, Govindan, 2017, Sundaram et al.,2001, 

Blanford, 1862; Nagendra and Reddy, 2017). It comprises bedded sandstone contains local 

boulder conglomerates with bleached, kaolinitic claystone and micaseous shale, which is 

interbbeded with a siltstone and sandstone of 0.5 m and well cemented with calcareous 

material.  

Figure 4. Mesozoic stratigraphy of the Cauvery Basin 

(modified after Nagendra and Reddy, 2017). 
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It is overlain by the Dalmiapuram Fm. (Albian to middle Turonian) comprising grey, 

fossiliferous, poorly lithified shale, calcareous mudstone, irregularly bedded to massive, fine-

grained coralline micritic and algal limestone, coquinite and calcareous sandstone with rounded 

quartzite pebbles locally grading to beds of granule and pebble conglomerate. The internal 

facies mosaic of this unit is complex but in the type section, limestone interbedded with 

calcareous mudstone overlies a thick unit (>30 m) of grey shale (Sundaram et al., 2001). 

The time equivalent Karai Shale Fm. consists of ammonites, belemnites, and worm tubes 

(Madhavaraju et al., 2015). Lithologically, it contains grey-brown, gypsiferous, glauconitic 

mudstone and marl which is black and gypsum free when freshly deposited, with sporadic thin, 

interbeds of siltstone, calcareous sandstone and coquinite particularly in its upper part. 

Sporadic calcareous, sideritic and phosphatic concretions and concretionary horizons occur in 

some intervals. Scattered macrofossils, predominantly molluscs, are typical of the formation 

(Sundaram et al., 2001). 

The Garudamangalam Fm. (Coniacian-Santonian) of Trichinopoly Group unconformably 

overlies the Karai Shale Fm. and comprises burrows in sandstone. Cross laminations are 

preserved in the upper portion indicating presence of the fluvial system and a sea level drop in 

the basin (Nagendra and Reddy, 2017). This formation is devoid of foraminifera but contains 

nannoplanktons and ammonite fossils (Reddy et al., 2013). The Sillakkudi Fm. (Campanian) 

overlies the Garudamangalam Fm.It comprises glauconite pellets and calcareous nodules 

(Rasheed and Ravindran, 1978). The Kallankurchchi Fm. (early Maastrichtian) overlies the 

Sillakkudi Fm.and consistsof limestone beds dominated by the benthic foraminifera. The 

Kallamedu Fm. (late Maastrichtian) comprises ferruginous limestone, a lower arenaceous 

limestone, and Gryphaea limestone overlies the Kallankurchchi Fm. (Reddy et al., 2013, 

Nagendra and Reddy, 2017). 
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OAE records 

A number of significant OAE events has been demarcated from the Cauvery Basin. The OAE-

1b has been marked at the Aptian-Albian boundary from the organic-rich shale deposits of the 

Terani Fm. (Nagendra and Reddy, 2017). The OAE-2 (Cenomanian-Turonian) and OAE-3 

(Coniacian-Santonian) has recorded from Karai Shale Fm. and Garudamangalam Fm. 

respectively (Fig. 3). Later on, Bansal et al. (2019) provided more precise age of the OAE by 

40Ar / 39Ar study from the glauconite occured at the lower part of the Karai Shale Fm. The age, 

ranging from 100.3 ± 0.7 to 92.6 ± 0.6 Ma correlates to the OAE-1d and OAE-2. Govindan 

(2017) and Nagendra and Reddy (2017) recorded OAE-1c, OAE-1d and OAE-2 from the 

Andimandam, Sattapadi Shale, and Bhuvanagiri formations from the organic‐rich shale 

containing up to 6% TOC. 

Madhavaraju et al.,(2015) carried out the petrographic, carbon, and oxygen isotopic studies 

from the Dalmiapuram Fm.exposed in the Vadugarpettai. He reported the positive shift of 0.8% 

in carbon isotopic values from the lower portion of the Coral algal Limestone. The shift 

coincided with the initiation of OAE-1d. The carbon isotopic value increases in the middle 

portion of the limestone coincided with the upper limit of the OAE-1d.  

Tewari et al.(1996) correlated the significant evolution of the Planktonic foraminifera 

assemblages and planktonic/benthonic (p/b) ratio with the OAE-1dand the OAE-2. 

 

Spiti Valley 

The Spiti valley is considered as the deformed remnants of the northern continental margin of 

the Indian subcontinent. It consists of dominant limestone, shale, siltstone, and dolomite. The 

sequence of 12,000 meters of Paleozoic–Mesozoic sediments is well preserved in this 

synclinoria basin in the Tethyan Himalaya. The succession was first referenced by Gerard 

(1827); subsequently worked by Hayden (1904, 1908) and Diener (1912). Further, detailed 



 

13 
 

work was done by many workers (Srikantia, 1981; Bagati, 1990; Gaetani and Garzanti, 1991; 

Bhargava and Bassi, 1998; Srikantia and Bhargava, 1998; Myrow et al., 2003). The detailed 

lithostratigraphic framework of the Spiti valley was proposed by Bhargava (2008). The 

Mesozoic Tethys sediments were classified into Tamba Kurkur Group, Sanglung Group, 

Nimoloksa Group, Kioto Group, and Lagudarsi Group; lies disconformably in ascending order 

shown in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OAE records:  

Pandey and Pathak (2015) carried out a preliminary study on ammonoids from the early 

Cretaceous Giumal Fm. of the Spiti Valley, Himachal Pradesh. He suggested an age of 

Berriasian to early Aptian to the Gimual Formation based on the ammonoids. Also, showed the 

presence of all the stages from Berriasian to early Aptian in the Giumal Fm. The age range of 

Figure 5. Mesozoic stratigraphy of Spiti Valley, Himachal Pradesh 

(modified after Bhargava 2008; Bertle and Suttner, 2005; Lukenederet al., 

2013; Pandey and Pathak, 2015; Pathak, 2007; Cariou et al., 1996). 
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Gimual Fm. and presence of dark grey to black shale layers in between sandstone beds 

enhances the possibility of the presence of late Valanginian Weissert Event (W-OAE), the 

latest Hauterivian Faraoni Event (F-OAE), and OAE-1ain the Giumal Fm. succession. The area 

has potential for the study of early Cretaceous OAEs.  

Bertle and Suttner (2005) carried out a detailed biostratigraphyof the Chikkim Fm. based on 

planktonic foraminifera. They have given an age ranging from late Albian to early 

Maastrichtian? to the Chikkim Fm. The age of the Lower Chikkim Fm. is from late Albian to 

Santonian and contains Cenomanian age sediments also, evidence by the presence of FO of 

Rotalipora globotruncanoides. In the upper portion of the Lower Chikkim Fm. presence of the 

single thin pinkish colored bed, suggests a change towards an oxygenated water column and 

presence of possible OAE-2, documented by the occurence of Whiteinella archaeocretacea 

Zone (Bertle and Suttner, 2005). 

 

Kutch Basin 

The Kutch Basin is a pericratonic rift basin in the Western Continental Margin of India, 

Gujarat. It comprises more than 25,000 m of synrift middle Jurassic to early Cretaceous 

sediments and post-rift late Paleocene to Pliocene and Quaternary sediments distributed in the 

northern, eastern, and the southern part of the basin (Biswas, 2016). The Mesozoic rocks are 

exposed in the uplifted areas especially islands (Wagad, Pachchham, Khadir etc.) and Kachchh 

mainland whereas the lowlying areas of Kachchh mainland are enclosed by Tertiary to recent 

marine and fluvio-deltaic sediments. Biswas (2016) classified Mesozoic successions of Kutch 

Basin into three lithostratigraphic Groups-Mainland Group, Pachchham Group, and Eastern 

Kutch Group. The Mainland sequences are divided into four formations-Jhurio, Jumara, 

Jhuran, and Bhuj in ascending chronological order shown in figure 6. 
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The Pachchham Group is divided into two formations- Lower Kaladongar, and Upper 

Goradongar formations. They are exposed in the northern Kaladongar and southern 

Figure 6. Mesozoic stratigraphy of Kutch Basin (modified after Biswas, 2016). 
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Goradongar hill ranges. The Eastern Kutch Group is divided into four formations- Khadir, 

Ghadhada, Washtawa, and Wagad Sandstone which are exposed in the disconnected rock units 

outcroped in the Khadir, Bela, Chorar ‘Island’ and Wagad Highland. The middle Jurassic to 

late Jurassic sediments were deposited inthe marine transgressive phase during the syn rifting 

stage whereas late Cretaceous to recent sediments deposited after post-rift stage which 

indicates deltaic to marginal shelf depositional environment. 

 

OAE records:  

The sedimentary facies and organic geochemical analysis carried out by Arora et al. (2015) on 

the organic rich black shale of the Middle Member (Rudramata Shale) of the Jhuran Fm. They 

divided lower portion of the Rudramata Shale into five lithofacies-  

Facies A: Black shale,  

Facies B: Black shale with siltstone inter-bedding,  

Facies C: shale and siltstone alternations with minor sandstones,  

Facies D: siltstone-sandstone alternations, and  

Facies E: plane laminated and hummocky cross-stratified sandstone.  

The Total Carbon Content (TOC), oxygen index (OI), hydrogen Index (HI), Tmax and trace 

elemental composition study records show significant variations. The TOC content decreases 

from Facies A (av. TOC- 3.4%) to Facies D (av. 0.6%). The black shale of Facies A and B 

have high TOC values and indicates deposition in possibly oxygen minimized zone developed 

at that time. Also, a significant shift was recorded in the Ni/Co ratio and V/(V+Ni) ratio plot 

represents an anoxic and sulfidic conditions in the depositional setting. Whereas the V/Cr ratio 

plot represents an oxic condition which might be due to diagenetic redistribution of the 

elements. The presence of the pyrite framboids of size ranging from 7 to 20 µm also correlated 

with an anoxic and sulfidic conditions within the depositional setting. These suggest sub-oxic 



 

17 
 

to anoxic conditions prevailed during the Late Jurassic and it could be signature of Late Jurassic 

Oceanic Anoxic Event. 

Pandey and Pathak (2016) discussed the presence of OAE-1a in the Ukra Member (early 

Cretaceous) of Bhuj Fm., Kutch Basin. 

 

DISCUSSION 

Apart from the globally recorded oceanic anoxic events (Three: T-OAE, OAE-1a and OAE-2 

several regional or local anoxic events are also reported from the different parts of world 

(Jenkyns, 2010; Leckie et al., 2002; Erba, 2004) (Table 1).  

Table 1. Global, Regional and Possible Oceanic Anoxic Events and their records from 

the different regions of the world. 

Sl. 

No. 

Oceanic Anoxic 

Events 

Records 

 

Global Oceanic Anoxic Events  

 

1. OAE 2, Bonarelli  

Event (~ 93.5 Ma) 

Western Tethys,  Southern Tethys, USA, North African 

Continental margin, Canadian Arctic , Alaska , Mexico 

Japan (Tiwari et al. 1996; Bertle and Suttner, 2005; 

Govindan, 2017; Nagendra & Reddy, 2017; Boulila et al., 

2020; Sooraj et al. 2024) 

2. OAE 1a Selli Event 

(~120 Ma) 

Northern Tethys (Zhang et al. 2021 and references 

therein) 

Western Tethys (Midtkandal et al., 2016; Tedeschi et al., 

2020; Giraud et al., 2018; Castro et al., 2021;  

 Giraldo-Gomez et al., 2022) 

Southern Tethys (Lowrie et al., 1980; Coccioni et al., 

1987, 1990; Erba, 1994; Baudin et al., 1998; Erba & 

Larson, 1998; van Breugel et al., 2007; Bottini et al., 2012; 

Hu et al., 2016; Karakitsions et al., 2018; Talbi et al., 2021) 

Pacific (Thiede et al., 1981; Sliter, 1989; van Breugel et 

al., 2007; Bottini et al., 2012; Erba et al., 2015; Matsumoto, 

2024) 

3. Toarcian OAE 

(Jenkyns 

Event) (~183 Ma)  

 

Arctic (Suan et al., 2011 and references therein) 

Panthalassic Ocean (Kemp et al., 2019; Kemp et al., 

2022; Chen et al., 2023 and references therein) 

Northern Tethys (Huang et al., 2024; Nie et al., 2023; 

Jin et al. 2020 and references therein) 

Western Tethys (Reolid et al. 2021; Peti & Thibault, 

2017; Chen et al., 2021; Fernández-Martínez et a., 2021; 



 

18 
 

Galasso et al., 2021; Müller et al., 2020; Boulila et al., 

2019; Satolli et al., 2018; Mattioli et al., 2009) 

Southern Tethys (Han et al., 2022; Kemp et al., 2022 and 

references therein) 

 

 

Regional Oceanic Anoxic Events 

 

1. OAE 3   Boreal (Jenkyns et al., 1994; Jarvis et al., 2006; Pugh et al., 

2014; Thibault et al., 2016; Eldrett et al., 2021; Grasby et 

al., 2024) 

Northern Tethys (Chamberlain et al., 2013; Wang et al., 

2016b; Jones et al., 2018 and references therein) 

Western Tethys (Arthur & Fischer, 1977; Jenkyns et al., 

1994; Stoll & Schrag; 2000; Wagreich & Krenmayr, 2005; 

Lamolda & Paul, 2007; Locklair et al., 2011; Frijia et al., 

2015) 

Southern Tethys (Clark & Jenkyns, 1999; Tur & 

Wagreich, 2005; Li et al., 2006; Wendler et al., 2011; 

Petrizzo et al., 2017; Huber et al., 2018; MacLeod et al., 

2020; Mansour et al., 2020b) 

Eastern Tethys (Navidtalab et al., 2020; Razmjooei et al. 

2020 and references therein) 

Pacific (Perez-Infante et al., 1996; Alberdi-Genolet & 

Tocco, 1999; Rey et al., 2004; Takashima et al., 2010; 

Ando et al., 2013; Machado et al., 2016; Tessin et al., 2019) 

Atlantic (Huber et al., 2002; Bottcher et al., 2006; 

Beckmann et al., 2008; Sachse et al., 2012, 2014; Aquit et 

al., 2017; Junium et al., 2018; Luft de Souza et al., 2018) 

2. OAE 1d, Breistroffer 

Event 

Boreal (Mitchell et al., 1996; Bornemann et al., 2017; 

Bornemann et al., 2023 and references therein) 

Northern Tethys (Melinte-Dobrinescu et al., 2015 and 

references therein)  

Western Tethys (Erbacher and Thurow, 1997; Gale et al., 

1996; Stoll and Schrag, 2000; Strasser et al., 2001; 

Bornemann et al., 2005; Reichelt, 2005; Sprovieri et al., 

2013; Gambacorta et al., 2015; Giorgioni et al., 2015; Bąk 

et al., 2016; Gyawali et al., 2017; Bottini & Erba) 

Southern Tethys (Govindan, 2017; Nagendra & Reddy, 

2017; Yao et al., 2018; Mansour et al., 2020a; Madhavaraju 

et al., 2021) 

Eastern Tethys (Vahrenkamp, 2013; Zhang et al., 2016; 

Wohlwend et al., 2016; Hennhoefer et al., 2018; 

Navidtalab et al., 2019) 

Atlantic (Wilson and Norris, 2001; Nederbragt et al., 2001; 

Watkins et al., 2005; Petrizzo et al., 2008; Ando et al., 

2010; Rodríguez-Cuicas et al., 2020) 

Pacific (Takashima et al., 2004; Robinson et al., 2008; 

Navarro-Ramirez et al., 2015; Rodríguez-Cuicas et al., 

2019, 2020) 
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Western Interior Seaway (North America) (Gröcke et 

al., 2006; Gröcke and Joeckel, 2008; Scott et al., 2013; 

Richey et al., 2018) 

Indian Ocean (Madhavaraju et al., 2015 and references 

therein) 

3. OAE 1c, Toolebuc 

Event 

Boreal (Strasser et al., 2001; Wójcik-Tabol & Ślączka 

2015 and references therein) 

Southern Tethys (Coccioni and Galeotti, 1993; Tiwari et 

al. 1996; Galeotti et al., 2003; Luciani et al., 2004; 

Govindan, 2017; Nagendra & Reddy, 2017; Madhavaraju 

et al., 2021) 

Pacific (Meyers et al., 2006; Scott et al., 2020 and 

references therein) 

Austral (Bralower et al., 1993; Haig and Lynch, 1993; 

Alibrahim, 2016 and references therein) 

4. OAE 1b, Paquier 

Event 

Boreal (Herrle et al., 2015; Bodin et al., 2023 and 

references therein) 

Northern Tethys (Ando and Kakegawa, 2007; Suarez et 

al., 2018; Gavrilov et al., 2019 and references therein) 

Western Tethys (Breheret and Crumiere, 1989; Strasser et 

al., 2001; Grocke, 2002; Heimhofer et al., 2003; Mutterlose 

et al., 2003; Herrle et al., 2004; Follmi et al., 2007; Millan 

et al., 2014) 

Southern Tethys (Coccioni et al., 2014; Li et al., 2016; 

Ben Chaabane et al., 2019) 

Atlantic (Bralower et al., 1999; Erbacher et al., 2001; 

Wagner et al., 2008; Huber and Leckie, 2011; McAnena et 

al., 2013; Peybernes et al., 2013; Phelps et al., 2015; 

Caetano-Filho et al., 2017; Huber et al., 2018; Matsumoto 

et al., 2023) 

Pacific (Price, 2003; Robinson et al., 2004; Ludvigson et 

al., 2015; Navarro-Ramirez et al., 2015; Matsumoto et al., 

2020) 

5. OAE F, Faraoni 

Event 

Western Tethys (Baudin, 2005; Baudin & Riquier, 2014; 

Rodríguez-Tovar & Uchman, 2017) 

Southern Tethys (Ammar & Layeb, 2021) 

Atlantic (Stein et al., 1989) 

South Africa (Brown et al., 1996) 

North Sea (Mutterlose & Ruffell, 1999) 

Pacific (Baudin et al., 1995; Jenkyns, 1995) 

Argentina (Tyson et al., 2005; Guler et al., 2013) 

6. OAE W, Weissert 

Event 

Southern Tethys (Bottini et al., 2018; Ammar & Layeb, 

2021) 

Western Tethys (Moller et al., 2020) 

Atlantic (Moller et al., 2020) 

 

Possible Oceanic Anoxic Events 

 

1. Mid  

Cenomanian  

Western Tethys (Coccioni & Galeotti, 2003) 
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Event 

2. Mid Barremian Event Southern Tethys (Talbi et al., 2021) 

2. Late Jurassic-Early 

Cretaceous  

Event 

Boreal sea (Rogov et al., 2020) 

Panthalassic Ocean (Nozaki et al., 2013) 

Southern Tethys (Arora et al., 2015)  

Northern Tethys (Carmeille et al., 2020)  

3. Mid-Late Jurassic  

Event 

Western Tethys (Martinez & Dera, 2015) 

 

Leckie et al. (2002) has given an overview of additional possible oceanic anoxic events. These 

additional possible anoxic events are recorded from the black shale units deposited worldwide 

during the late Aptian (~116 Ma), latest Aptian–early Albian (OAE-1b; ~113– 109 Ma), late 

Albian (OAE-1c and OAE-1d; ~102 and ~99.2 Ma, respectively), mid Cenomanian (~96 Ma), 

an event in the late Aptian, between OAE-1a and OAE-1b (Arthur et al., 1990; Weissert and 

Lini, 1991; Bralower et al., 1993, 1999; Bréhéret, 1994; Erbacher et al.,1996; Weissert et al., 

1998; Wilson and Norris, 2001). The multiple black shales of OAE-1b are mostly restricted to 

Mexico and the North Atlantic basin (western Tethys) and the Mediterranean (eastern Tethys) 

region (Bralower et al., 1993, 1999; Arthur and Premoli Silva, 1982; Bréhéret et al., 1986; 

Premoli Silva et al., 1989). OAE-1b time interval is linked with cooling and sea level fall in 

the latest Aptian and following sea level rise during the early Albian (Weissert and Lini, 1991; 

Weissert et al., 1998). OAE-1c (lower upper Albian) has been identified from the central Italy, 

the U.S. western interior, and Australia (Bralower et al., 1993; Erbacher et al., 1996; Pratt and 

King, 1986; Coccioni and Galeotti, 1993; Haig and Lynch, 1993). Conversely, OAE-1d is 

widely preserved as a black shale across Tethys with patchy occurrences in the South Atlantic, 

southern Indian, and eastern Pacific Ocean basins; it is primarly linked with marine organic 

matter enrichment due to increased primary productivity (Bréhéret, 1994; Erbacher et al., 1996; 

Wilson and Norris, 2001; Bréhéret and Delamette, 1989). The cause of the OAE-1d is 

explained from the ODP Site 1052. The Cyclic black shales in the uppermost Albian sequence 

are correlative to OAE-1d and correspond to an interval manifested by collapse of upper water 
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column stratification which was caused by the intensification of mixing during winters and 

reduced stratification during summers (Petrizzo et al., 2008).  

The global and regional OAE records from India are very limited. Only one global Oceanic 

Anoxic Event, OAE2 is recorded from the Indian successions. It is recorded from the two areas, 

i. Chikkim Formation, Spiti Valley, ii. Karai Shale Formation and Bhuvanagiri Formation, 

Cauvery Basin. In India the published records on regional OAEs (OAE 1b, OAE 1d and OAE 

3) are available only from the Cretaceous successions of Cauvery Basin.   

 

Possible OAEs and possible horizons in India 

Possible OAE occurs in the mid-Cenomanian of the Tethys where it is associated with a 

positive carbon excursion (~1%), deposition of marine organic matter, and an extinction event 

in the radiolarian (Erbacher et al., 1996; Stoll and Schrag, 2000; Coccioni and Galeotti, 2003). 

Within the same time period, benthic calcareous micro-organisms exhibit a steady reduction in 

both species diversity and faunal density (Coccioni et al., 1995).  

Apart from the above OAE, a Mid Barremian anoxic event (Talbi et al., 2021), a Late Jurassic-

Early Cretaceous anoxic event (Nozaki et al., 2013; Arora et al., 2015; Carmeille et al., 2020; 

Rogov et al., 2020) and an Mid-Late Jurassic OAE event (Martinez & Dera, 2015;) are also 

possible. For ascertaining their regional or global extent more studies are needed from the 

suitable sucessions around the world. 

In Indian sedimentary sequences the marine Mesozoic black shale, dark grey or glauconitic 

deposits falling in the additional possible OAEs time slice are mainly deposited in Spiti, Kutch 

and Cauvery basins. From the Kutch Basin, Pandey and Pathak (Pandey and Pathak, 2016) 

showed the possible presence of early Aptian based on the ammonoid genera Deshayesites and 

Australiceras in the Ukra Mb. of the Bhuj Formation. These ammonoids were recorded from 

the green shales which is characterstic deposit of OAE in Shallower depths. For ascertaining 
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the presence of OAE-1a in the Ukra Mb. geochemical studies and other marine fossil group 

studies are required from the green shales, which is key lithology to shows presence of OAE 

in an extreme marginal location. OAE-1b can be demarcated in Upper Mb. of the Bhuj Fm. 

due to its age range and marine nature of deposits (Darji and Solanki, 2017). Predominantly, 

Rudramata shale Member of Jhuran Fm. contains dark grey to black shales which could be a 

possible horizon to study the Late Jurassic OAE (Arora et al., 2015) (Fig. 3). 

The Tagling Fm. (Lias) of Kioto Group, Spiti Valley mainly contains limestone with 

black shaley bands and ranges in age from Late Triassic to Early Jurassic. In this view the 

possibility of T-OAE in Tagling Fm. could not be denied. The Spiti Fm. (Callovian-Tithonian) 

mainly comprises black shale and remarks the presence of Late Jurassic OAE. Overlying 

Guimal Fm. (Berriasian-Aptian) mainly comprises sanstone with intercalations of black shales 

and these black shales can give signatures of Weissert event, Faraoni event and OAE-1a. Also 

OAE-1b, OAE-1c, OAE-1d, OAE-2, and OAE-3 can be traced out in the Chikkim Fm. 

(Cenomanian-early Maastrichtian) (Fig. 3).  

From the Cauvery Basin OAE-1b, OAE-1d, OAE-2 and OAE-3 are already studied but the 

possibility of OAE-1c from Onshore and Offshore organic rich shaley successions still present 

and can be distinguish in the Karai Fm. (Albian to middle Turonian) of Uttatur Group on 

Onshore and from Andimadam Fm. on Offshore. Still detailed study is required of the 

previously recorded oceanic anoxic events from the Cauvery Basin (Fig. 3). 

 

CONCLUSION 

Within the previous few years, in India, researches on oceanic anoxic events have been carried 

out utilizing detailed biostratigraphy, stable isotopic studies, organic geochemistry, and 

sedimentary facies studies of the geochemically significant organic-rich laminated black shales 

from the Mesozoic successions exposed in different basins. But, the integrated approach for 
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OAE characterization from individualsection is lacking. The purpose of this review paper is to 

provide a comprehensive introduction to Oceanic anoxic events and records of OAEs from the 

varied parts of India and findout the probable horizons from which these studies can be taken 

up in future. The review highlights the potentiality of the various regions from where the 

increasing number of studies would offer a much better understanding of the OAEs from Indian 

basins.The holestic approach for establishing OAE events from Indian sections is totally 

lacking. A few studies have been taken from the Cauvery Basin upto some extent but from the 

other areas the OAE studies are in nascent stage. It is an authors hope that the work, 

comprehensively presented in this overview has paved the ground for more research on OAEs 

from Indian sediments.  
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