Progress and challenges in understanding Asian palaeogeography and monsoon evolution from the perspective of the plant fossil record

Authors

  • Robert A. Spicer School of Environmental, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K.
  • Alex Farnsworth School of Geographical Sciences and Cabot Institute, University of Bristol, Bristol, BS8 1SS, U.K.

DOI:

https://doi.org/10.54991/jop.2021.16

Keywords:

Tibet, Himalaya, Palaeoaltimetry, Plant fossils, Palaeoclimate

Abstract

Land surface elevation, climate and vegetation are intrinsically linked at a range of spatial and temporal scales. In the case of Asia, complex relief hosts some of the richest biodiversity on our planet and is dominated by a system of monsoons, the features of which are determined in large part by topography and land surface characteristics, including vegetation. Such regions have not only acted as an incubator for evolving species but also as refugia during periods of environmental crisis. The exceptional topography of Asia includes the largest and highest elevated region on Earth, the Tibetan Plateau, along with the Himalaya and the Hengduan mountains, collectively referred to here as the THH region. In recent years there has been a revolution in thinking as to how the THH was formed, how the several monsoons systems that affect it have changed, and how it has influenced regional, even global, biodiversity evolution. Accurately dated plant fossils have played key roles in these advances. Here we review the complex evolution of the THH landscape, the modernization of the biota in the Paleogene, and the transition to the modern landscape and monsoon systems in the Neogene. We show how these changes in understanding have been brought about by recent fossil discoveries and new radiometric dating of previously known assemblages, methodological advances arising from integrating improved proxy data, and numerical palaeoclimate modelling. Significant knowledge gaps remain, however, which demand further advances in proxy and numerical methodologies, as well as new fossil discoveries in key locations for specific time intervals.

सारांश

भूमि की सतह का उत्थान, जलवायु और वनस्पति आंतरिक रूप से स्थानिक और लौकिक पैमानों की श्रेणी में जुड़े हुए हैं। एशिया के संदर्भ में, जटिल प्रमुखता हमारे ग्रह पर सबसे समृद्ध जैव विविधता की मेजबानी करती है और मानसून की एक प्रणाली की प्रभुत्वता दिखाती है, जिनकी विशेषताएं वृहद भाग में स्थलाकृति और वनस्पति सहित भूमि की सतह विशेषताओं द्वारा निर्धारित की जाती हैं। ऐसे क्षेत्रों ने न केवल विकसित प्रजातियों के लिए एक इनक्यूबेटर के रूप में काम किया है बल्कि पर्यावरणीय संकट की अवधि के दौरान रिफ्यूजिया के रूप में भी काम किया है। एशिया की असाधारण स्थलाकृति में पृथ्वी पर सबसे बड़ा और सबसे ऊंचा क्षेत्र, तिब्बती पठार, हिमालय और हेंगडुआन पर्वत शामिल हैं, जिन्हें सामूहिक रूप से यहां टीएचएच क्षेत्र के रूप में संदर्भित किया गया है। हाल के वर्षों में इस सोच में एक क्रांति आई है कि टीएचएच कैसे बना, इसे प्रभावित करने वाली कई मानसून प्रणालियां कैसे बदली हैं, और इसने क्षेत्रीय, यहां तक कि वैश्विक, जैव विविधता विकास को कैसे प्रभावित किया है। सटीक रूप से दिनांकित पादप जीवाश्मों ने इन अग्रिमों में महत्वपूर्ण भूमिका निभाई है। यहां हम टीएचएच परिदृश्य के जटिल विकास, पेलियोजीन में बायोटा के आधुनिकीकरण, और आधुनिक परिदृश्य और नियोजीन में मानसून प्रणालियों के संक्रमण की समीक्षा करते हैं। हम दिखाते हैं कि समझ में ये बदलाव हाल के जीवाश्म खोजों और पहले से ज्ञात संयोजनों के नए रेडियोमेट्रिक डेटिंग, बेहतर प्रॉक्सी डेटा को एकीकृत करने से उत्पन्न होने वाली पद्धतिगत प्रगति, और संख्यात्मक पुराजलवायु मॉडलिंग द्वारा कैसे लाए गए हैं। हालांकि, महत्वपूर्ण ज्ञान अंतराल बने हुए हैं, जो प्रॉक्सी और संख्यात्मक पद्धतियों में अग्रिम आधुनिकीकरण के साथ-साथ विशिष्ट समय अंतराल के लिए प्रमुख स्थानों में नई जीवाश्म खोजों की मांग करते हैं।

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Acosta RP & Huber M 2020. Competing topographic mechanisms for the summer Indo-Asian monsoon. Geophysical Research Letters 47: e2019GL085112. DOI: https://doi.org/10.1029/2019GL085112

Affek H, Bar-Matthews M, Ayalon A, Matthews A & Eiler J 2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by clumped isotope thermometry: Geochimica et Cosmochimica Acta 72: 5351–5360. DOI: https://doi.org/10.1016/j.gca.2008.06.031

An W, Hu X, Garzanti E, Wang J-G, & Liu Q 2021. New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma. Geophysical Research Letters 48: e2020GL090641. https://doi.org/10.1029/2020GL090641 DOI: https://doi.org/10.1029/2020GL090641

Antal JS & Awasthi N 1993. Fossil flora from the Himalayan foot hills of Darjeeling foot-hills of Darjeeling District, West Bengal and its palaeoecological and phytogeographical significance. Palaeobotanist 42 (1): 14–60. DOI: https://doi.org/10.54991/jop.1993.1129

Antal JS & Prasad M 1996a. Some more leaf-impressions from the Himalayan foothills of Darjeeling District, West Bengal, India. Palaeobotanist 43: 1–9. DOI: https://doi.org/10.54991/jop.1994.1171

Antal JS & Prasad M 1996b. Dipterocarpaceous fossil leaves from Ghish River section in Himalayan foot hills near Oodlabari, Darjeeling District, West Bengal. Palaeobotanist 43: 73–77. DOI: https://doi.org/10.54991/jop.1994.1189

Antal JS & Prasad M 1997. Angiospermous fossil leaves from the Siwalik sediments (Middle-Miocene) of Darjeeling District, West Bengal. Palaeobotanist 46: 95–104. DOI: https://doi.org/10.54991/jop.1997.1353

Antal JS & Prasad M 1998. Morphotaxonomic study of some more fossil leaves from the lower Siwalik sediments of West Bengal, India. Palaeobotanist 47: 86–98. DOI: https://doi.org/10.54991/jop.1998.1276

Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner- Riehl AN, Kreft H, Linder PL, Badgley C, Fjeldså J, Fritz SA, Rahbeck C, Herman F, Hooghiemstra H & Hoorn C, 2018. Geological and climatic influences on mountain biodiversity. Nature Geosciences 11: 718–725. DOI: https://doi.org/10.1038/s41561-018-0236-z

Armstrong HA, Wagner T, Herringshaw LG, Farnsworth AJ, Lunt DJ, Harland M, Imber J, Lopston C & Atar EFL 2016. Hadley circulation and precipitation changes controlling black shale deposition in the Late Jurassic Boreal Seaway. Paleoceanography 31: 1041–1053. DOI: https://doi.org/10.1002/2015PA002911

Awasthi N 1992. Changing patterns of vegetation through Siwalik succession. Palaeobotanist 40: 312–327. DOI: https://doi.org/10.54991/jop.1991.1781

Axelrod DI 1981. Altitudes of Tertiary forests estimated from paleotemperature. In: Liu, D.S. (ed.) Proceedings of Symposium on Qinghai‐Xizang (Tibet) Plateau, (Beijing, China); Geological and Ecological Studies of Qinghai‐ Xizang Plateau; vol. 1, Geology, Geological History and Origin of Qinghai‐Xiang Plateau. Beijing: Science Press and New York: Gordon and Breach, Science Publishers, Inc.: 131–137.

Axelrod DI 1997. Paleoelevation estimates from Tertiary floras. International Geology Review 39: 1124–1133. DOI: https://doi.org/10.1080/00206819709465319

Axelrod DI & Bailey HP 1976. Tertiary vegetation, climate, and altitude of the Rio Grande depression, New Mexico–Colorado. Paleobiology: 235–254. DOI: https://doi.org/10.1017/S0094837300004814

Banerjee M 1996. Tropical estuarine angiosperm vegetation in the Neogene sediments of Bhutan, Eastern Himalaya, and remarks on palaeogeography of Siwalik foreland basins of Indian Subcontinent. Rheedea 6 (1): 127–140.

Banerjee M & Dasgupta R 1984. Angiosperm leaf remains from the Siwalik sediments (Mio-Pliocene) of Bhutan, Eastern Himalaya. A. K. Ghosh commemorative volume. Evolutionary Botany and Biostratigraphy: 129–143.

Banerjee M & Dasgupta R 1996. Palynostratigraphy and palaeoenvironment-palaeo- geographic considerations of Siwalik sediments of Bhutan, Eastern Himalaya. Geological Survey India Special Publication 21 (1): 233–248.

Bhatia H, Khan MA, Srivastava G, Hazra T, Spicer RA, Mehrotra RC, Spicer TEV, Bera S, & Roy K 2021a. Late Cretaceous–Paleogene Indian monsoon climate vis-à-vis movement of the Indian plate and the birth of the South Asia Monsoon. Gondwana Research 93: 89–100. https://authors.elsevier.com/sd/article/S1342-937X(21)00028-9 DOI: https://doi.org/10.1016/j.gr.2021.01.010

Bhatia H, Srivastava G, Spicer RA, Farnsworth A, Spicer TEV, Mehrotra RC, Paudayal K, & Valdes PJ 2021b. Leaf physiognomy records the Miocene intensification of the South Asia Monsoon. Global and Planetary Change 196: 103365. https://doi.org/10.1016/j.gloplacha.2020.103365. DOI: https://doi.org/10.1016/j.gloplacha.2020.103365

Boos WR & Kuang Z 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463: 218–222. DOI: https://doi.org/10.1038/nature08707

Cautley PT 1835. Letter noticing the discovery of further fossils in vast quantity in the Siwalik Range. Journal of the Asiatic Society of Bengal 4: 585–587.

Chatterjee S & Scotese CR 2010. The wandering Indian plate and its changing biogeography during the Late Cretaceous–Early Tertiary period. In: Bandopadhyay S (ed) New Aspects of Mesozoic Biogeography. Springer, Berlin, pp 105–126 DOI: https://doi.org/10.1007/978-3-642-10311-7_7

Chatterjee S, Goswami A & Scotese CR 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research 23: 238–267. https://doi.org/10.1016/j.gr.2012.07.001 DOI: https://doi.org/10.1016/j.gr.2012.07.001

Chevalier M, Cheddadi R & Chase BM 2014. CREST (Climate REconstruction SofTware): a probability density function (PDF)-based quantitative climate reconstruction method, Climate of the Past, 10: 2081–2098. https://doi.org/10.5194/cp-10-2081-2014, 2014. DOI: https://doi.org/10.5194/cp-10-2081-2014

Claussen M, Fohlmeister J, Ganopolsky A & Brokin V 2006. Vegetation dynamics amplifies precessional forcing. Geophysical Research Letters 33: L09709. DOI: https://doi.org/10.1029/2006GL026111

Clift PD 2017. Cenozoic sedimentary records of climate-tectonic coupling in the Western Himalaya. Progress in Earth and Planetary Science 4: 39. DOI: https://doi.org/10.1186/s40645-017-0151-8

Clift PD, Carter A, Wysocka A, Long HV, Zheng H, Neubeck N 2020. A late Eocene- Oligocene through-flowing river between the upper Yangtze and south

China sea. G-cubed. https://doi.org/10.1029/2020GC009046. DOI: https://doi.org/10.1029/2020GC009046

Clift P D, Hodges K V, Heslop D, Hannigan R, Van Long H, & Calves G 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience 1: 875-880. DOI: https://doi.org/10.1038/ngeo351

Coutand I, Whipp D, Grujic D, Bernet M, Fellin M, Bookhagen B, Landry K, Ghalley S & Duncan C 2014. Geometry and kinematics of the main Himalayan thrust and Neogene crustal exhumation in the Bhutanese Himalaya derived from inversion of multithermochronologic data. Journal of Geophysical Research Solid Earth 119: 1446–1481. DOI: https://doi.org/10.1002/2013JB010891

Coutand I, Barrier L, Govin G, Grujic D, Hoorn C, Dupont-Nivet G & Najman Y 2016. Late Miocene-Pleistocene evolution of India-Eurasia convergence partitioning between the Bhutan Himalaya and the Shillong Plateau: new evidences from foreland basin deposits along the Dungsam Chu section, eastern Bhutan. Tectonics 35: 2963–2994. DOI: https://doi.org/10.1002/2016TC004258

Currie BS, Polissar PJ, Rowley D, Ingals M, Li S, Olack G, & Freeman KH 2016. Multiproxy palaeoaltimetry of the late Oligocene-Pliocene Oiyug Basin, southern Tibet. American Journal of Sciences 316: 401–436. DOI: https://doi.org/10.2475/05.2016.01

Ding L, Kapp P, & Wan X 2005. Paleocene–Eocene record of ophiolite obduction and initial India–Asia collision, south central Tibet. Tectonics 24: TC3001 DOI: https://doi.org/10.1029/2004TC001729

Ding L, Spicer RA, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer TEV, Yue Y, Shukla A, Srivastava G, Khan MA, Bera S, & Mehrotra RC 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45: 215–218. DOI: https://doi.org/10.1130/G38583.1

Ding L, Xu Q, Yue YH, Wang HQ, Cai FI, & Li SQ 2014. The Andean-type Gangdese mountains: paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth and Planetary Science Letters 392: 250–264. DOI: https://doi.org/10.1016/j.epsl.2014.01.045

Ding W-N, Ree RH, Spicer RA, & Xing W-W 2020. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science 369: 578–581.

https://doi.org/10.1126/science.abb4484 DOI: https://doi.org/10.1126/science.abb4484

Eiler JM 2007. “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters 262: 309–327, doi: 10.1016/j.epsl.2007.08.020. DOI: https://doi.org/10.1016/j.epsl.2007.08.020

Eiler JM 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews 30: 3575–3588. DOI: https://doi.org/10.1016/j.quascirev.2011.09.001

Fang X, Dupont-Nivet G, Wang C, Song C, Meng Q, Zhang W, Nie J, Zhang T, Mao Z, & Chen Y 2020. Revised chronology of central Tibet uplift (Lunpola Basin). Science Advances 6: eaba7298. DOI: https://doi.org/10.1126/sciadv.aba7298

Farnsworth A, Lunt DJ, Robinson SA, Valdes PJ, Roberts WHG, Clift PD, Markwick PJ, Su, T., Wrobel N, Bragg F, Kelland S-J, & Pancost RD 2019. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Science Advances 5: eaax1697. DOI: https://doi.org/10.1126/sciadv.aax1697

Farnsworth A, Valdes PJ, Spicer RA, Ding L, Witkowski C, Lauretano V, Li S-F, Li S-H, & Zhou Z-K 2021. Palaeoclimate model-derived thermal lapse rates: towards increasing precision in palaeoaltimetry studies. Earth and Planetary Science Letters 564: 116903 https://doi.org/10.1016/j.epsl.2021.116903 DOI: https://doi.org/10.1016/j.epsl.2021.116903

Ferguson DK 1985. The origin of leaf-assemblages – new light on an old problem. Review of Palaeobotany and Palynology 46: 117–188. DOI: https://doi.org/10.1016/0034-6667(85)90041-7

Fick SE, & Hijmans RJ 2017. WorldClim2: New 1-km spatial resolution climate surfaces for global land surfaces. International Journal of Climatology 37: 4302–4315. DOI: https://doi.org/10.1002/joc.5086

Flohn H 1968. Contributions to a meteorology of the Tibetan Highlands. Atmospheric Science Papers. Department of Atmospheric Science, Colorado State University: 130 pp.

Forest CE, Molnar P & Emanuel KA 1995. Palaeoaltimetry from energy conservation principles. Nature 374: 347–350. DOI: https://doi.org/10.1038/374347a0

Forest CE, Wolfe JA & Emanuel KA 1999. Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate. Geological Society of America Bulletin 111: 497–511. DOI: https://doi.org/10.1130/0016-7606(1999)111<0497:PIAPAB>2.3.CO;2

Gallagher TM & Sheldon ND 2016. Combining soil water balance and clumped isotopes to understand the nature and timing of pedogenic carbonate formation. Chemical Geology 435: 79–91. http://dx.doi.org/10.1016/j.chemgeo.2016.04.023 DOI: https://doi.org/10.1016/j.chemgeo.2016.04.023

Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble E, Schrag D & Eiler J 2006. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer: Geochimica et Cosmochimica Acta 70: 1439–1456. DOI: https://doi.org/10.1016/j.gca.2005.11.014

Gourbet L, Leloup PH, Paquette J-L, Sorrel P, Maheo G, Wang G-C, Xu Y, Cao K, Antoine P-O, Eymard I, Liu W, Lu H, Replumaz A, Chevalier M-L, Zhang K, Wu J & Shen T 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan Plateau evolution. Tectonophysics 700–701: 162–179. DOI: https://doi.org/10.1016/j.tecto.2017.02.007

Greenwood DR, Archibald SB, Mathewes RW & Moss PT 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences 42: 167–185. DOI: https://doi.org/10.1139/e04-100

Greenwood DR, Moss P, Rowett A., Vadala AJ, & Keefe R 2003. Plant Communities and Climate Change in Southeastern Australia during the Early Paleogene. Geological Society of America Special Paper 369: 365–380. DOI: https://doi.org/10.1130/0-8137-2369-8.365

Gregory KM 1994. Paleoclimate and paleoelevation of the 35 Ma Florissant flora, Front Range, Colorado. Palaeoclimates 1: 23–57.

Gregory KM & Chase CG 1992. Tectonic significance of paleobotanically estimated climate and altitude of the late Eocene erosion surface, Colorado. Geology 20: 581–585. DOI: https://doi.org/10.1130/0091-7613(1992)020<0581:TSOPEC>2.3.CO;2

Gregory KM & McIntosh WC 1996. Paleoclimate and paleoelevation of the Oligocene Pitch Pinnacle flora, Sawatch Range, Colorado. Geological Society of America Bulletin 108: 545–561. DOI: https://doi.org/10.1130/0016-7606(1996)108<0545:PAPOTO>2.3.CO;2

Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS & McDowell NG 2020. Plant responses to rising vapour deficit. New Phytologist 226:1550–1566. https://doi.org/10.1111/nph.16485 DOI: https://doi.org/10.1111/nph.16485

Ha K-J, Moon S, Timmermann A & Kim D 2020. Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophysical Research Letters 47: e2020GL087492. https://doi.org/10.1029/2020GL087492. DOI: https://doi.org/10.1029/2020GL087492

Hazra T, Spicer RA, Hasra M, Mahato S, Spicer TEV, Bera S, Valdes PJ, Farnsworth F, Hughes AC, Yang J & Khan MA 2020. Latest Neogene monsoon of the Chotanagpur Plateau, eastern India, as revealed by fossil leaf architectural signatures. Palaeogeography, Palaeoclimatology, Palaeoecology 545: 109641 https://doi.org/10.1016/j.palaeo.2020.109641 DOI: https://doi.org/10.1016/j.palaeo.2020.109641

He H-Y, Sun J, Li Q, & Zhu R 2012. New age determination of the Cenozoic Lunpola basin, central Tibet. Geological Magazine 149(1): 141–145. DOI: https://doi.org/10.1017/S0016756811000896

Hetzel R, Dinkl I, Haider V, Strobl M, von Eynatten H, Ding L & Frei D 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology 39: 983–986. DOI: https://doi.org/10.1130/G32069.1

Hoke GD 2018. Geochronology transforms our view of how Tibet's southeast margin evolved. Geology 46: 95–96. DOI: https://doi.org/10.1130/focus012018.1

Hoke GD, Liu-Zeng J, Hren MT, Wissink GK & Garzione CN 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet Science Letters 394: 270–278. DOI: https://doi.org/10.1016/j.epsl.2014.03.007

Huber BT & Goldner A 2012. Eocene monsoons. Journal of Asian Earth Sciences 44: 3–23. DOI: https://doi.org/10.1016/j.jseaes.2011.09.014

Huntington KW, Saylor J, Quade J, & Hudson AM 2015. High late Miocene–Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry. GSA Bulletin 127: 181-199. DOI: https://doi.org/10.1130/B31000.1

Jain AK, Lal N, Sulemani B. Awasthi AK, Singh S & Kumar D 2009. Detrital-zircon fission-track ages from the lower Cenozoic sediments, Northwestern Himalayan Foreland Basin: clues for exhumation and denudation of the Himalaya during the India-Asia collision. Geological Society of America Bulletin 121: 519-535. DOI: https://doi.org/10.1130/B26304.1

Kapp P & DeCelles PG 2019. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. American Journal of Sciences 319: 159–254. DOI: https://doi.org/10.2475/03.2019.01

Kershaw AP 1996. A bioclimatic analysis of Early to Middle Miocene brown coal floras, Latrobe Valley, southeastern Australia. Australian Journal of Botany 45: 373–383. DOI: https://doi.org/10.1071/BT96033

Kershaw AP & Nix HA 1988. Quantitative palaeoclimatic estimates from pollen data using bioclimatic profiles of extant taxa. Journal of Biogeography 15: 589–602. DOI: https://doi.org/10.2307/2845438

Khan MA & Bera S 2014a. On some Fabaceous fruits from the Siwalik sediments (Middle Miocene-Lower Pleistocene) of Eastern Himalaya. Journal of the Geological Society of India 83: 165–174. DOI: https://doi.org/10.1007/s12594-014-0028-z

Khan MA & Bera S 2014b. New lauraceous species from the Siwalik forest of Arunachal Pradesh, eastern Himalaya, and their palaeoclimatic and palaeogeographic implications. Turkish Journal of Botany 38: 453–464. DOI: https://doi.org/10.3906/bot-1308-35

Khan MA, Bera M, Spicer RA, Spicer TEV & Bera S 2019. Palaeoclimatic estimates for the late Cenozoic (Mio-Pliocene) Siwalik Flora of Bhutan: Evidence for the development of the South Asian Monsoon in the eastern Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology 514: 326–335 DOI: https://doi.org/10.1016/j.palaeo.2018.10.019

Khan MA, Bera S, Ghosh R, Spicer RA & Spicer TEV 2015. Leaf cuticular morphology of some angiosperm taxa from the Siwalik sediments (middle Miocene to lower Pleistocene) of Arunachal Pradesh, eastern Himalaya: systematic and palaeoclimatic implications. Review of Palaeobotany and Palynology 214: 9–26. DOI: https://doi.org/10.1016/j.revpalbo.2014.10.008

Khan M, Bera M, Spicer RA, Spicer TEV & Bera S 2017. First occurrence of mastixioid (Cornaceae) fossil in India and its biogeographic implications. Review of Palaeobotany and Palynology 247: 83–96. DOI: https://doi.org/10.1016/j.revpalbo.2017.08.006

Khan M, Ghosh R, Bera S, Spicer RA, & Spicer TEV 2011. Floral diversity during Plio-Pleistocene Siwalik sedimentation (Kimin Formation) in Arunachal Pradesh, India, and its palaeoclimatic significance. Palaeobiodiversity and Palaeoenvironments 91: 237–255. DOI: https://doi.org/10.1007/s12549-011-0059-z

Khan MA, Spicer RA, Bera S, Ghosh R, Yang J, Spicer TEV, Guo S-X, Su T, Jacques FMB & Grote PJ 2014. Miocene to Pleistocene floras and climate of the eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling-Oiyug Basin, Tibet. Global and Planetary Change 113: 1–10. DOI: https://doi.org/10.1016/j.gloplacha.2013.12.003

Khan M, Spicer RA, Spicer TEV & Bera S 2016. Occurrence of Shorea Roxburgh ex C. F. Gaertner (Dipterocarpaceae) in the Neogene Siwalik forests of eastern Himalaya and its biogeography during the Cenozoic of Southeast Asia. Review of Palaeobotany and Palynology 233: 236–254. DOI: https://doi.org/10.1016/j.revpalbo.2016.07.011

Khan MA, Spicer RA, Spicer TEV & Bera S 2017. Evidence for diversification of Calophyllum L. (Calophyllaceae) in the Neogene Siwalik forests of eastern Himalaya. Plant Systematics and Evolution 303: 371–386. DOI: https://doi.org/10.1007/s00606-016-1376-5

Khan MA, Spicer RA, Spicer TEV, Roy K, Bera M, Hazra T, Mahato S & Bera S 2020. Dipterocarpus Gaertn. (Dipterocarpaceae) leaves from the K-Pg of India: A Cretaceous Gondwana origin of the Dipterocarpaceae. Plant Systematics and Evolution 306: 90 https://doi.org/10.1007/s00606-020-01718-z DOI: https://doi.org/10.1007/s00606-020-01718-z

Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT & Stockli L 2009. Did the Kohistan-Ladakh Island Arc collide first with India. Geological Society of America Bulletin 121: 366–384. DOI: https://doi.org/10.1130/B26348.1

Kovach W & Spicer RA 1996. Canonical correspondence analysis of leaf physiognomy: a contribution to the development of a new palaeoclimatological tool. Palaeoclimates: Data and Modelling 2: 125–138.

Leuschner DC & Sirocko F 2003. Orbital insolation forcing of the Indian Monsoon– a motor for global climate changes? Palaeogeography, Palaeoclimatology. Palaeoecology 197: 83–95. DOI: https://doi.org/10.1016/S0031-0182(03)00387-0

Li S, Currie BS, Rowley DB & Ingalls M 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth and Planetary Science Letters 432: 415–424. DOI: https://doi.org/10.1016/j.epsl.2015.09.044

Li S-H, Su T, Spicer RA, Xu C-L, Sherlock S, Halton A, Hoke G, Tian Y-M, Zhou Z-K, Deng C-L & Zhu R-X 2020. Oligocene deformation of the Chuandian terrane in the SE margin of the Tibetan Plateau related to the extrusion of Indochina. Tectonics 39: e2019TC005974. DOI: https://doi.org/10.1029/2019TC005974

Lin J, Dai, J-G, Zhuang G, Jia G, Zhang L, Ning Z, Li,Y, & Wang C 2020. Late Eocene-Oligocene high relief paleotopography in the North Central Tibetan Plateau: Insights from detrital Zircon U-Pb Geochronology and leaf wax hydrogen isotope studies. Tectonics 39: e2019TC005815. https:// doi.org/10.1029/2019TC005815 DOI: https://doi.org/10.1029/2019TC005815

Liu X & Yin Z-Y 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 183: 223–245. DOI: https://doi.org/10.1016/S0031-0182(01)00488-6

Liu‐Zeng J, Zhang J, McPhillips D, Reiners P, Wang W, Pik R, Zeng L, Hoke G, Xie K, Xiao P, Zhen D, & Ge Y 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low‐temperature thermochronology. Earth and Planetary Science Letters 490: 62–76. DOI: https://doi.org/10.1016/j.epsl.2018.03.011

Linnemann U, Su T, Kunzmann L, Spicer RA, Ding W-N, Spicer TEV, Zieger J, Hofmann M, Moraweck K, Gärtner A, Gerdes A, Marko L, Zhang S-T, Li S- F, Tang HL, Huang J, Mulch A, Mosbrugger V & Zhou Z-K 2018. New U-Pb dates show a Paleogene origin for the modern Asian biodiversity hot spots. Geology 46: 3–6. DOI: https://doi.org/10.1130/G39693.1

Liu X-H 2018. Paleoelevation history and evolution of the Cenozoic Lunpola basin, Central Tibet. PHD thesis, University of the Chinese Academy of Sciences (in Chinese with English abstract).

Ma P, Wang C, Meng J, Ma C, Zhao X, Li Y & Wang M2017. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Research 48: 224–236. DOI: https://doi.org/10.1016/j.gr.2017.04.023

McElwain JC 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure. Geology 32: 1017–1020. DOI: https://doi.org/10.1130/G20915.1

Meyer HW 1992. Lapse rates and other variables applied to estimating paleoaltitudes from fossil floras. Palaeogeography, Palaeoclimatology, Palaeoecology 99: 71–99. DOI: https://doi.org/10.1016/0031-0182(92)90008-S

Meyer HW 2007. A review of paleotemperature‐lapse rate methods for estimating paleoelevation from fossil floras. Reviews in Mineralogy and Geochemistry 66: 155–171. DOI: https://doi.org/10.2138/rmg.2007.66.6

Molnar P, Boos WR & Battisti DS 2010. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences 38: 77–102. DOI: https://doi.org/10.1146/annurev-earth-040809-152456

Molnar P & Stock JM 2009. Slowing of India's Convergence with Eurasia since 20 Ma and its Implications for Tibetan Mantle Dynamics Tectonics: 28 TC3001. https://doi.org/10.1029/2008TC002271 DOI: https://doi.org/10.1029/2008TC002271

Mosbrugger V & Utescher T 1997. The Coexistence Approach – a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 134: 61–86. DOI: https://doi.org/10.1016/S0031-0182(96)00154-X

Mulch A 2016. Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth and Planetary Science Letters 433: 180–191. DOI: https://doi.org/10.1016/j.epsl.2015.10.034

Mulch A & Chamberlain CP 2006. The rise and growth of Tibet. Nature 439: 670–671. DOI: https://doi.org/10.1038/439670a

Mulch A & Chamberlain CP 2018. Stable isotope paleoaltimetry: paleotopography as a key element in the evolution of landscapes and life. In: Hoorn C, Perrigo A, & Antonelli A (Eds.), Mountains, Climate and Biodiversity. Wiley Blackwell: 81–93.

Nie J, Ruetenik G, Gallagher K, Hoke GD, Garzione CN, Wang W, Stockli D, Hu X, Wang Z, Wang Y, Stevens T, Danisík M & Liu S 2018. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience 11: 944–949. DOI: https://doi.org/10.1038/s41561-018-0244-z

Polissar P, Freeman K, Rowley D, McInerney F, & Currie BS 2009. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth and Planetary Science Letters 287: 64–76. DOI: https://doi.org/10.1016/j.epsl.2009.07.037

Poole I, Weyers JDB, Lawson T & Raven JA 1996. Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant, Cell and Environment 19: 705–712. DOI: https://doi.org/10.1111/j.1365-3040.1996.tb00405.x

Prasad M 1994a. Angiospermous leaf remains from the Siwalik sediments of Haridwar, Uttar Pradesh and their bearing on palaeoclimate and phytogeography. Himalayan Geology 15: 83–94.

Prasad M 1994b. Siwalik (Middle Miocene) woods from the Kalagarh area in the Himalayan foot hills and their bearing on palaeoclimate and phytogeography. Review of Palaeobotany and Palynology 76: 49–82. DOI: https://doi.org/10.1016/0034-6667(93)90080-E

Prasad M 1994c. Siwalik (Middle-Miocene) leaf impressions from the foot-hills of the Himalaya, India. Tertiary Research 15 (2): 53–90.

Prasad M & Pandey SM 2008. Plant diversity and climate during Siwalik (Miocene- Pliocene) in the Himalayan foot hills of western Nepal. Palaeontographica B 278: 13–70. DOI: https://doi.org/10.1127/palb/278/2008/13

Prasad M & Tripathi PP 2000. Plant megafossils from the Siwalik sediments of Bhutan and their climatic significance. Biological Memoirs 26: 6–19.

Quade J, Eiler J, Daëron M & Achyuthan H 2013. The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica et Cosmochimica Acta 105: 92–107. doi:10.1016/j.gca.2012.11.031. DOI: https://doi.org/10.1016/j.gca.2012.11.031

Quan C, Liu YS (C) & Utescher T 2011. Paleogene Evolution of Precipitation in northeastern China supporting the middle Eocene intensification of the East Asia Monsoon. Palaios 26: 743–753. DOI: https://doi.org/10.2110/palo.2011.p11-019r

Rahbeck C, Borregaard MK, Antonelli A, Colwell RK, Holt BG, Nogues- Bravo D, Rasmussen CMØ, Richardson K, Rsoing MT, Whittaker RJ & Fjeldså J 2019. Building mountain biodiversity: geological and evolutionary processes. Science 365: 1114–1119. DOI: https://doi.org/10.1126/science.aax0151

Ramage CS 1971. Monsoon Meteorology. International Geophysics Series, Vol. 15, Academic Press, San Diego, Calif., 296 pp.

Reichgelt T, West CK & Greenwood DR 2018. The relation between global palm distribution and climate. Scientific Reports 8: 4721–4731. DOI: https://doi.org/10.1038/s41598-018-23147-2

Renner SS 2016. Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. Journal of Biogeography 43: 1479–1487. DOI: https://doi.org/10.1111/jbi.12755

Retallack GJ 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33: 333–336. DOI: https://doi.org/10.1130/G21263.1

Roperch P & Dupont-Nivet G 2021. Are carbonates from the India-Asia collision remagnetized ? , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15842, https://doi.org/10.5194/egusphere-egu21-15842, 2021. DOI: https://doi.org/10.5194/egusphere-egu21-15842

Rowley DB & Currie BS 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439: 677–681. https://doi.org/10.1038/nature04506. DOI: https://doi.org/10.1038/nature04506

Rowley DB & Garzione CN 2007. Stable isotope-based paleoaltimetry. Annual Review of Earth and Planetary Sciences 35: 463–508. DOI: https://doi.org/10.1146/annurev.earth.35.031306.140155

Rowley D, Pierrehumbert RT & Currie BS 2001. A new approach to stable isotope- based paleoaltimetry; implications for paleoaltimetry and paleohypsometry of the High Himalaya since the late Miocene. Earth and Planetary Science Letters 188: 253–268. DOI: https://doi.org/10.1016/S0012-821X(01)00324-7

Sahagian DL & Maus JE 1994. Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation: Nature 372: 449–451. DOI: https://doi.org/10.1038/372449a0

Sahagian, DL, Proussevitch A, & CarlsonW 2002. Timing of Colorado Plateau uplift: Initial constraints from vesicular basalt-derived paleoelevations. Geology 30: 807–810. DOI: https://doi.org/10.1130/0091-7613(2002)030<0807:TOCPUI>2.0.CO;2

Sahni A. 1988. Cretaceous-Tertiary boundary events: The fossil vertebrate palaeomagnetic and radiometric evidences from peninsula India. Journal of the Geological Society of India 32: 382–396.

Saylor JE, Quade J, Dettman DL, DeCelles PG, Kapp PA & Ding L 2009. The late Miocene through present paleoelevation history of southwestern Tibet. American Journal of Sciences 309: 1–42. DOI: https://doi.org/10.2475/01.2009.01

Song B, Spicer RA, Zhang K, Ji J, Farnsworth A, Hughes AC, Yang Y, Han F, Xu Y, Spicer TEV, Shen T, Lunt DJ & Shi G 2020. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth and Planetary Science Letters 537: 116175. https://doi.org/10.1016/j.epsl.2020.116175 DOI: https://doi.org/10.1016/j.epsl.2020.116175

Spicer RA 2017. Tibet, the Himalaya, Asian monsoons and biodiversity - in what ways are they related? Plant Diversity 39: 233–244. DOI: https://doi.org/10.1016/j.pld.2017.09.001

Spicer RA 2018. Phytopaleoaltimetry: Using Plant Fossils to Measure Past Land Surface Elevation, in Mountains, Climate and Biodiversity, Hoorn C, Perrigo A, Antonelli A. Eds. (Wiley-Blackwell, 2018), chap. 7: 96–109.

Spicer RA, Ahlberg A, Herman AB, Hofmann C-C, Raikevich M, Valdes PJ & Markwick PJ 2008. The Late Cretaceous continental interior of Siberia: A challenge for climate models. Earth and Planetary Science Letters 267: 228-235. DOI: https://doi.org/10.1016/j.epsl.2007.11.049

Spicer RA, Farnsworth A & Su T. 2020a. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story. Plant Diversity 4: 229-254. https://doi.org/10.1016/j.pld.2020.06.011. DOI: https://doi.org/10.1016/j.pld.2020.06.011

Spicer RA, Harris NBW, Widdowson M, Herman AB, Guo, S, Valdes PJ, Wolfe JA, & Kelley SP, 2003. Constant elevation of Southern Tibet over the past 15 million years. Nature 412: 622-624. DOI: https://doi.org/10.1038/nature01356

Spicer RA, Su T, Valdes PJ, Farnsworth A, Wu F-X, Shi G, Spicer TEV & Zhou Z-K 2020b. Why the 'uplift of the Tibetan Plateau' is a myth. National Science Review 8: nwaa091. https://doi.org/10.1093/nsr/nwaa091. DOI: https://doi.org/10.1093/nsr/nwaa091

Spicer RA, Su T, Valdes PJ, Farnsworth A, Wu F-X, Shi G, Spicer TEV & Zhou Z-K 2020c. The Topographic Evolution of the Tibetan Region as Revealed by Palaeontology. Palaeobiodiversity and Palaeoenvironments 101: 213–214. https://doi.org/10.1007/s12549-020-00452-1 DOI: https://doi.org/10.1007/s12549-020-00452-1

Spicer RA & Wolfe JA 1987. Taphonomy of Holocene deposits in Trinity (Clair Engle) Lake, Northern California. Paleobiology 13: 227-245. DOI: https://doi.org/10.1017/S0094837300008770

Spicer RA, Yang J, Herman A, Kodrul T, Aleksandrova G, Maslova N, Spicer TEV, Ding L, Xu Q, Shukla A, Srivastava G, Mehrotra RC, & Jin J-H 2017. Paleogene monsoons across India and South China: drivers of biotic change. Gondwana Research 49: 350–363. DOI: https://doi.org/10.1016/j.gr.2017.06.006

Spicer RA, Yang J, Herman AB, Kodrul T, Maslova N, Spicer TEV, Aleksandrova G & Jin J 2016. Asian Eocene monsoons as revealed by leaf architectural signatures. Earth and Planetary Science Letters 449: 61–68. DOI: https://doi.org/10.1016/j.epsl.2016.05.036

Spicer RA, Yang J, Spicer TEV & Farnsworth A 2020d. Woody dicot leaf traits as a palaeoclimate proxy: 100 years of development and application. Palaeogeography, Palaeoclimatology, Palaeoecology 562: 110138 https://doi.org/10.1016/j.palaeo.2020.110138 DOI: https://doi.org/10.1016/j.palaeo.2020.110138

Su T, Farnsworth A, Spicer RA, Huang J, Wu, F-X, Liu J, Li S-F, Xing Y-W, Huang Y-J, Deng W-Y-D, Tang H, Xu C-L, Zhao F, Srivastava G, Valdes PJ, Deng T & Zhou Z-K 2019. No high Tibetan plateau until the Neogene. Science Advances 5: eaav2189. DOI: https://doi.org/10.1126/sciadv.aav2189

Su T, Spicer RA, Li S-H, Xu H, Huang J, Sherlock S, Huang Y-J, Li S-F, Wang L, Jia LB, Deng, W-Y-D, Deng C-L, Zhang S-T, Valdes PJ & Zhou Z-K 2018. Climate and biotic changes at the Eocene-Oligocene transition in south- east Tibet. National Science Review 6: 495–504. DOI: https://doi.org/10.1093/nsr/nwy062

Su T, Spicer RA, Wu F-X, Farnsworth A, Huang J, Deng T, Ding L, Deng W-Y-D, Huang Y-J, Hughes A, Jia L-B, Jin J-H, Li S-F, Liang S-Q, Liu J, Liu X-Y, Sherlock S, Spicer TEV, Srivastava G, Tang H, Valdes PJ, Wang T-X, Widdowson M, Wu M-X, Xing, Y-W, Xu C-L, Yang J, Zhang S-T, Zhang X-W, Zhao F & Zhou Z-K 2020. A middle Eocene lowland humid subtropical ‘Shangri-La’ ecosystem in central Tibet. PNAS 117: 32989–32995. https://doi.org/10.1073/pnas.2012647117 DOI: https://doi.org/10.1073/pnas.2012647117

Tanaka T 1954. Species Problem in Citrus. Japanese Society for the Promotion of Science. Ueno, Tokyo: 1–15.

Tang H, Li S-F, Su T, Spicer RA, Zhang S-T, Li S-H, Liu J, Lauretano V, Witkowski C, Spicer TEV, Deng W-Y-D, Wu M-X, Ding WN & Zhou Z-K 2020. Early Oligocene vegetation and climate of southwestern China inferred from palynology. Palaeogeography, Palaeoclimatology, Palaeoecology 560: 109988. DOI: https://doi.org/10.1016/j.palaeo.2020.109988

Tian Y, Spicer RA, Huang J, Zhou Z, Su T, Widdowson M, Jia L, Li S, Wu W, Li Xue L, Luo P & Zhang S 2021. Late Paleocene Tectonic deformation and Biodiversity in Yunnan, SW China: new constrains from zircon U-Pb geochronology. Earth and Planetary Science Letters 565: 116929. https://doi.org/10.1016/j.epsl.2021.116929 DOI: https://doi.org/10.1016/j.epsl.2021.116929

Tuenter E, Weber SL, Hilgen,FJ & Lourens, LJ 2006. Simulating sub-Milankovitch climate variations associated with vegetation dynamics. Climate of the Past 2: 745–769. DOI: https://doi.org/10.5194/cpd-2-745-2006

Utescher T, Bruch AA, Erdei B, François L, Ivanov D, Jacques FMB, Kern AK, Liu Y-S(C), Mosbrugger V, Spicer RA 2014. The Coexistence Approach—Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeography Palaeoclimatology Palaeoecology 410: 58–73. DOI: https://doi.org/10.1016/j.palaeo.2014.05.031

Valdes PJ 2000. Warm Climate Forcing Mechanisms. Cambridge University Press, Cambridge. 3–20 pp. DOI: https://doi.org/10.1017/CBO9780511564512.002

Valdes PJ, Ding L, Farnsworth A, Spicer RA, Li S-H & Su T 2019. Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene” Science Technical Comment 10.1126/science.aax8474.. DOI: https://doi.org/10.1126/science.aax8474

van Hinsbergen D J, Lippert PC, Dupont-Nivet G, McQuarrie N, Doubrovine PV, Spakman W & Torsvik TH 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences 109(20): 7659–7664. DOI: https://doi.org/10.1073/pnas.1117262109

Wang B, Ho L 2002. Rainy season of the Asian-Pacific summer monsoon. Journal of Climate 15: 386–398. DOI: https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2

Wang CS, Dai J, Zhao X, Li Y, Graham SA, He D, Ran B & Meng J 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: a review. Tectonophysics: 621, 1–43. DOI: https://doi.org/10.1016/j.tecto.2014.01.036

Wang E, Kirby E, Furlong KP, van Soest M, Xu G, Shi X, Kamp PJJ & Hodges KV 2012. Two‐phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience 5(9): 640–645. https://doi.org/10.1038/ngeo1538. DOI: https://doi.org/10.1038/ngeo1538

Wang Q, Li Y., Ferguson DK, Mo W-B, Yang N. 2021. An equable subtropical climate throughout China in the Miocene based on palaeofloral evidence. Earth-Science Reviews https://doi.org/10.1016/j.earscirev.2021.103649 DOI: https://doi.org/10.1016/j.earscirev.2021.103649

Webster PJ & Fasullo J 2003. Monsoon: dynamical theory. In: Holton, J.R. (Ed.), Encyclopedia of Atmospheric Sciences. Academic Press, London, 1370–1385 pp. DOI: https://doi.org/10.1016/B0-12-227090-8/00236-0

Wei Y, Zhang K, Garzione CN, Xu Y, Song B & Ji J 2016. Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin. Scientific Reports 6: 27508. DOI: https://doi.org/10.1038/srep27508

Wolfe JA 1979. Temperature Parameters of Humid to Mesic Forests of Eastern Asia and Relation to Forests of Other Regions of the Northern Hemisphere and Australasia. United States Geological Survey Professional Paper 1106: 1–37. DOI: https://doi.org/10.3133/pp1106

Wolfe JA 1992. An analysis of present‐day terrestrial lapse rates in the western conterminous United States and their significance to paleoaltitudinal estimates. United States Geological Survey Bulletin 1964: 1–35.

Wolfe JA 1993. A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin 2040: 1–73.

Wolfe JA 1993. A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin 2040: 73 pp.

Wu F, Miao D, Chang N-M, Shi G & Wang, N 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Scientific Reports 7: 878–885. https://doi.org/10.1038/s41598-017-00928-9. DOI: https://doi.org/10.1038/s41598-017-00928-9

Wu Z-Y, Zhou Z-K, Sun H, Li D-Z & Peng H 2006. The Areal-Types of Seed Plants and Their Origin and Differentiation. Kunming: Yunnan Publishing Group Corporation Yunnan Science & Technology Press, Kunming: 1–566.

Xie G, Li J-F, Wang S-Q, Yao Y-F, Sun B, Ferguson DK, Li C-S, Deng T, Liu X-D & Wang Y-F 2021. Bridging the knowledge gap on the evolution of the Asian monsoon during 26-16 Ma, The Innovation doi: https://doi.org/10.1016/j.xinn.2021.100110. DOI: https://doi.org/10.1016/j.xinn.2021.100110

Xing Y-W, Utescher T, Jacques FMB, Su T, Liu Y (C), Huang, Y & Zhou Z 2012. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene: evidence from plant macrofossils. Palaeogeography Palaeoclimatology Palaeoecology 358–360: 19–26. DOI: https://doi.org/10.1016/j.palaeo.2012.07.011

Xiong Z, Ding L, Wang X, Spicer RA, Farnsworth A, Wang X, Valdes PJ, Su T, Zhang Q, Zhang L, Cai F, Wang H, Li Z, Song P, Guo X & Yue Y 2020. The early Eocene rise of the Gonjo Basin, SE Tibet: from low desert to high forest. Earth Planetary Science Letters 543: 116312. https://doi.org/10.1016/ j.epsl.2020.116312. DOI: https://doi.org/10.1016/j.epsl.2020.116312

Xu Q, Ding L, Spicer RA, Liu X, Li S, & Wang H 2018. Stable isotopes reveal southward growth of the Himalayan-Tibetan Plateau since the Paleocene. Gondwana Research 54: 50–61. DOI: https://doi.org/10.1016/j.gr.2017.10.005

Yanai M, & Wu GX 2006. Effects of the Tibetan Plateau. In: Wang, B. (Ed.), The Asian Monsoon. Springer, Berlin, pp. 513–549. DOI: https://doi.org/10.1007/3-540-37722-0_13

Yang J, Spicer RA, Spicer TEV, Arens NC, Jacques FMB, Su T, Kennedy EM, Herman AB, Steart DC, Srivastava G, Mehrotra RC, Valdes PJ, Mehrotra NC, Zhou ZK & Lai JS 2015. Leaf Form-Climate Relationships on the Global Stage: An Ensemble of Characters. Global Ecology and Biogeography 10: 1113–1125. DOI: https://doi.org/10.1111/geb.12334

Yang J, Spicer RA, Spicer TEV & Li C‐S 2011. “CLAMP Online”: a new web‐based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodiversity and Palaeoenvironments 91: 163–183. DOI: https://doi.org/10.1007/s12549-011-0056-2

Zaarur S, Olack G & Affek HP 2011. Paleo-environmental implication of clumped isotopes in land snail shells. Geochimica et Cosmochimica Acta 75: 6859–6869. doi: 10.1016/j.gca.2011.08.044. DOI: https://doi.org/10.1016/j.gca.2011.08.044

Zhang L, Niu H, Wang S, Zhu X, Luo C, Li Y & Zhao X 2012. Gene or environment? Species-specific control of stomatal density and length. Ecology and Evolution 2(5):1965–1070. DOI: https://doi.org/10.1002/ece3.233

Zhang S & Wang B 2008. Global summer monsoon rainy seasons. International Journal of Climatology 28: 1563–1578. DOI: https://doi.org/10.1002/joc.1659

Zhu J, Poulsen CJ & Tierney JE 2019. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Science Advances 5: eaax1874. DOI: https://doi.org/10.1126/sciadv.aax1874

Zhuang G S, Zhang YG, Hourigan JK, Ritts BD, Hren M, Hou MQ, Wu MH, & Kim B 2019. Microbial and geochronologic constraints on the Neogene paleotopography of Northern Tibetan Plateau. Geophysical Research Letters 46 (3): 1312–1319. DOI: https://doi.org/10.1029/2018GL081505

Downloads

Published

2021-09-10

How to Cite

A. Spicer, R., & Farnsworth, A. (2021). Progress and challenges in understanding Asian palaeogeography and monsoon evolution from the perspective of the plant fossil record. Journal of Palaeosciences, 70((1-2), 213–236. https://doi.org/10.54991/jop.2021.16