Yukon to the Yucatan: Habitat partitioning in North American Late Pleistocene ground sloths (Xenarthra, Pilosa)

Authors

  • H. Gregory McDonald Colorado State Office, Bureau of Land Management 2850 Youngfield Street, Lakewood, CO 80215 USA

DOI:

https://doi.org/10.54991/jop.2021.17

Keywords:

Ground sloth, Pleistocene, Palaeoecology

Abstract

The late Pleistocene mammalian fauna of North America included seven genera of ground sloth, representing four families. This cohort of megaherbivores had an extensive geographic range in North America from the Yukon in Canada to the Yucatan Peninsula in Mexico and inhabited a variety of biomes. Within this latitudinal range there are taxa with a distribution limited to temperate latitudes while others have a distribution restricted to tropical latitudes. Some taxa are better documented than others and more is known about their palaeoecology and habitat preferences, while our knowledge of the palaeoecology of taxa more recently discovered remains limited. In order to better understand what aspects of their palaeoecology allowed their dispersal from South America, long–term success in North America and ultimately the underlying causes for their extinction at the end of the Pleistocene more information is needed. A summary overview of the differences in the palaeoecology of the late Pleistocene sloths in North America and their preferred habitats is presented based on different data sources.

सारांश

उत्तरी अमेरिका के अंतिम प्लीस्टोसीन स्तनधारी जीवों में ग्राउंड स्लॉथ के सात वंश शामिल हैं जो कि चार परिवारों का प्रतिनिधित्व करते हैं। मेगाहर्बिवोर्स के इस समूह की कनाडा में युकोन से लेकर मेक्सिको में युकाटन प्रायद्वीप तक उत्तरी अमेरिका में व्यापक भौगोलिक सीमा है और विभिन्न प्रकार के बायोम में बसे हुए हैं। इस अक्षांशीय सीमा में समशीतोष्ण अक्षांशों तक सीमित वितरण वाले टैक्सा हैं जबकि अन्य उष्णकटिबंधीय अक्षांशों तक सीमित रूप से वितरित हैं। कुछ वर्गकों को दूसरों की तुलना में बेहतर प्रलेखित किया गया है और उनके पुरापारिस्थितिकी और आवास की प्राथमिकताओं के बारे में अधिक जानकारी है, जबकि हाल ही में खोजे गए वर्गकों के पुरापारिस्थितिकी के बारे में हमारा ज्ञान सीमित है। बेहतर ढंग से समझने के लिए कि उनके पुरापारिस्थितिकी के किन पहलुओं ने दक्षिण अमेरिका से उनके फैलाव की अनुमति दी, उत्तरी अमेरिका में दीर्घकालिक सफलता और अंततः प्लीस्टोसीन के अंत में उनके विलुप्त होने के अंतर्निहित कारणों के बारे में अधिक जानकारी की आवश्यकता है। विभिन्न डेटा स्रोतों के आधार पर उत्तर अमेरिका में उत्तर प्लीस्टोसीन स्लॉथ के पुरापारिस्थितिकी में अंतर और उनके पसंदीदा आवासों का सारांश अवलोकन प्रस्तुत किया गया है।

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ambrose SH 1991. Effects of diet, climate and physiology of nitrogen isotope abundances in terrestrial foodwebs. Journal of Archaeological Science 18: 293-317. DOI: https://doi.org/10.1016/0305-4403(91)90067-Y

Ambrose SH & DeNiro MJ 1986. The isotopic ecology of East African mammals. Oecologia 69: 395-406. DOI: https://doi.org/10.1007/BF00377062

Ambrose SH & DeNiro MJ 1987. Bone nitrogen isotope composition and climate. Nature 325:201. DOI: https://doi.org/10.1038/325201a0

Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D & Baisden WT 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17:31.01 31.10. DOI: https://doi.org/10.1029/2002GB001903

Barber A, Tun J & Crespo MB 2001. A new approach on the bioclimatology and potential vegetation of the Yucatan Peninsula (Mexico). Phytocoenologia 31: 1–31. DOI: https://doi.org/10.1127/phyto/31/2001/1

Bonde AM 2013. Palaeoecology of Late Pleistocene megaherbivores: Stable isotope reconstruction of environment, climate, and response. Ph.D. dissertation, University of Nevada, Las Vegas, 213p.

Brookman TH & Ambrose SH 2012. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia. Quaternary Research 78: 256–265. DOI: https://doi.org/10.1016/j.yqres.2012.05.011

Bryson RA 2005. Archaeoclimatology. In: Oliver JE (Editor)—Encyclopedia of World Climatology. Encyclopedia of Earth Sciences Series, Springer, New York: 58-63. DOI: https://doi.org/10.1007/1-4020-3266-8_13

Bryson RA & Bryson RU 1997. Macrophysical climatic modeling of Africa’s Late Quaternary climate: site-specific, high-resolution applications for archaeology. African Archaeological Review 14: 143-160. DOI: https://doi.org/10.1007/BF02968405

Bryson RA & Bryson RU 2000. Site-specific high-resolution models of the Monsoon for Africa and Asia. Global and Planetary Change 26: 77-84. DOI: https://doi.org/10.1016/S0921-8181(00)00035-7

Bryson RA & McEnaney DeWall K (Editors) 2007. A Palaeoclimatology Workbook: High Resolution, Site-Specific, Macrophysical Climate Modeling. The Mammoth Site of Hot Springs, SD, Inc., 190 p.

Clack AA, MacPhee RDE & Poinar HN 2012. Case Study: Ancient sloth DNA recovered from hairs preserved in palaeofeces. In: Shapiro B & Hofreiter M (Editors), Ancient DNA: Methods and Protocols, Methods in Molecular Biology, vol. 840: 51-56. DOI: https://doi.org/10.1007/978-1-61779-516-9_7

Cogbill CV & White PS 1991. The latitude-elevation relationship for spruce-fir forest and treeline along the Appalachian mountain chain. Vegetatio 94: 153–175. DOI: https://doi.org/10.1007/BF00032629

Coltrain JB, Harris JM, Cerling TE, Ehleringer JR, Dearing MD, Ward J & Allen J 2004. Rancho La Brea stable isotope biogeochemistry and its implications for the palaeoecology of late Pleistocene, coastal southern California. Palaeogeography, Palaeoclimatology, Palaeoecology 205: 199–219. DOI: https://doi.org/10.1016/j.palaeo.2003.12.008

Correa-Metrio A, Bush MB, Hodell DA, Brenner M, Escobar J & Guilderson T 2011. The influence of abrupt climate change on the ice-age vegetation of the Central American lowlands. Journal of Biogeography 39: 497-509. DOI: https://doi.org/10.1111/j.1365-2699.2011.02618.x

Cruz FW, Vuille M, Burns SJ, Wang X, Cheng H, Werner M, Lawrence Edwards R, Karmann I, Auler AS & Nguyen H 2009. Orbitally driven east-west antiphasing of South American precipitation. Nature Geoscience 2: 1–5. doi:10.1038/ngeo444. DOI: https://doi.org/10.1038/ngeo444

Dantas MAT, Cherkinsky A, Bocherens H, Drefahl M, Bernardes C & França LDM 2017. Isotopic palaeoecology of the Pleistocene megamammals from the Brazilian Intertropical Region: feeding ecology (δ13C), niche breadth and overlap. Quaternary Science Reviews 170: 152–163. DOI: https://doi.org/10.1016/j.quascirev.2017.06.030

Davis OK 1987. Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quaternary Research 28: 290–294. DOI: https://doi.org/10.1016/0033-5894(87)90067-6

Davis OK & Shafer DS 2006. Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeography, Palaeoclimatology, Palaoecology 237: 40–50. DOI: https://doi.org/10.1016/j.palaeo.2005.11.028

De Iuliis G, McDonald HG, Stanchly N, Spenard J & Powis TG 2015. Nothrotheriops shastensis (Sinclair, 1905) from Actun Lak: First record of Nothrotheridae (Mammalia, Xenarthra, Pilosa) from Belize. Ameghiniana 52: 153-171. DOI: https://doi.org/10.5710/AMGH.05.11.2014.2821

DeNiro MJ & Epstein S 1978a. Carbon isotopic evidence for different feeding patterns in two hyrax species occupying the same habitat. Science 201: 906-908. DOI: https://doi.org/10.1126/science.201.4359.906

DeNiro MJ & Epstein S 1978b. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495-506. DOI: https://doi.org/10.1016/0016-7037(78)90199-0

DeSantis LRG, Feranec RS & MacFadden BJ 2009. Effects of global warming on ancient mammalian communities and their environments. PLOS ONE 4, e5750 DOI: https://doi.org/10.1371/journal.pone.0005750

Díaz-Sibaja R, Jiménez-Hidalgo E, Ponce Saavedra J & García-Zepeda ML 2018 A combined mesowear analysis of Mexican Bison antiquus shows a generalist diet with geographical variation: Journal of Palaeontology 92: 1130–1139. DOI: https://doi.org/10.1017/jpa.2018.19

Edwards ME, Brubaker LB, Lozhkin AV & Anderson PM 2005. Structurally novel biomes: a response to past warming in Beringia. Ecology 86: 1696–1703. DOI: https://doi.org/10.1890/03-0787

França LM, Dantas MAT, Bocchiglieri A, Cherkinsky A, Ribeiro AS & Bocherens H 2014. Chronology and ancient feeding ecology of two upper Pleistocene megamammals from the Brazilian Intertropical Region. Quaternary Science Reviews 99: 78–83. DOI: https://doi.org/10.1016/j.quascirev.2014.04.028

France CAM, Zelanko PM, Kaufman AJ & Holtz TR 2007. Carbon and nitrogen isotopic analysis of Pleistocene mammals from the Saltville Quarry (Virginia, USA): implications for trophic relationships. Palaeogeography, Palaeoclimatology, Palaeoecology 249: 271–282. DOI: https://doi.org/10.1016/j.palaeo.2007.02.002

Gilmour DM, Butler VL, O'Connor JE, Davis EB, Culleton BJ, Kennett DJ & Hodgins G 2015. Chronology and ecology of late Pleistocene megafauna in the northern Willamette Valley, Oregon. Quaternary Research 83: 127-136. DOI: https://doi.org/10.1016/j.yqres.2014.09.003

Graham RW & Grimm EC 1990. Effects of global climate change on the patterns of terrestrial biological communities. Trends in Ecology & Evolution 5: 289-292. DOI: https://doi.org/10.1016/0169-5347(90)90083-P

Gröcke DR, Bocherens H & Mariotti A 1997. Annual rainfall and nitrogen-isotope correlation in macropod collagen: application as a palaeoprecipitation indicator. Earth and Planetary Science Letters 153: 279-285. DOI: https://doi.org/10.1016/S0012-821X(97)00189-1

Hansen RM 1978. Shasta ground sloth food habits, Rampart Cave, Arizona. Palaeobiology 4: 302–319. DOI: https://doi.org/10.1017/S0094837300006011

Heaton THE, Vogel GC, von la Chevallerie G & Collett G 1986. Climatic influence on the isotopic composition of bone nitrogen. Nature 322: 822-823. DOI: https://doi.org/10.1038/322822a0

Hoganson JW & McDonald HG 2007. The first report of the occurrence of Jefferson’s ground sloth (Megalonyx jeffersonii) in North Dakota and its palaeobiogeographical and palaeoecological significance. Journal of Mammalogy 88: 73-80. DOI: https://doi.org/10.1644/06-MAMM-A-132R1.1

Hunt AP & Lucas SG 2018. The record of sloth coprolites in North and South America: Implications for terminal Pleistocene extinctions. New Mexico Museum of Natural History and Science Bulletin 79: 277–298.

Islebe GA, Sánchez-Sánchez O, Valdéz Hernández M & Weissenberger H 2015. Distribution of vegetation types. In: Islebe GA, Calmé S, León-Cortes L & Schmook B (Editors)—Biodiversity and Conservation of the Yucatán Peninsula: Switzerland: 39–53. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-06529-8_3

Jackson ST & Overpeck JT 2000. Responses of plant populations and communities to environmental changes of the late Quaternary. Palaeobiology 26(Suppl): 194–220. DOI: https://doi.org/10.1666/0094-8373(2000)26[194:ROPPAC]2.0.CO;2

Koch PL 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Science 26: 573-613. DOI: https://doi.org/10.1146/annurev.earth.26.1.573

Larmon JT, McDonald HG, Ambrose S, DeSantis LRG & Lucero LJ 2019. A year in the life of a giant ground sloth during the Last Glacial Maximum in Belize. Science Advances 2019; 5: eaau1200, 9 pp. DOI: https://doi.org/10.1126/sciadv.aau1200

Laudermilk JD & Munz PA 1934. Plants in the dung of Nothrotherium from Gypsum Cave, Nevada. Carnegie Institution of Washington Publication No. 453: 29-37.

Leyden BW, Brenner M, Hodell DA & Curtis JH 1994. Orbital and internal forcing of climate on the Yucatan Peninsula for the past ca. 36 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 193-210. DOI: https://doi.org/10.1016/0031-0182(94)90176-7

Lindsey EL, Lopez Reyes EX, Matzke GE, Rice KA & McDonald HG 2020. A monodominant late-Pleistocene megafauna locality from Santa Elena, Ecuador: Insight on the biology and behavior of giant ground sloths. Palaeogeography, Palaeoclimatology, Palaeoecology 544: 109599, 9 pp. DOI: https://doi.org/10.1016/j.palaeo.2020.109599

Lozano-Garcia MS, Ortega-Guerrero B, Caballero-Miranda M & Urrutia-Fucugauchi J 1993. Late Pleistocene and Holocene palaeoenvironments of Chalco Lake, Central Mexico. Quaternary Research 40: 332–342. DOI: https://doi.org/10.1006/qres.1993.1086

Marín-Leyva AH, Arroyo-Cabrales J, GarcíaZepeda ML, Ponce-Saavedra J, Schaaf P, Pérez- Crespo VA, Morales-Puente P, Cienfuegos-Alvarado E & Alberdi MT 2016, Feeding ecology and habitat of Late Pleistocene Equus horses from west-central Mexico using carbon and oxygen isotopes variation: Revista Mexicana de Ciencias Geológicas, 33: 157–169. DOI: https://doi.org/10.1016/j.palaeo.2015.10.019

McDonald HG 1996. Biogeography and palaeoecology of ground sloths in California, Arizona and Nevada. San Bernardino County Museum Association Quarterly 43: 61-65.

McDonald HG 2005. Palaeoecology of extinct Xenarthrans and the Great American Biotic Interchange. Bulletin of the Florida Museum of Natural History 45: 313-333.

McDonald HG 2011. Nothrotheriops shastensis: the desert adapted ground sloth. Society of Vertebrate Palaeontology, 71st Annuak Meeting, Program with Abstracts: 155.

McDonald HG & Bryson RA 2010. Modeling Pleistocene local climatic parameters using Macrophysical Climate Modeling and the palaeoecology of Pleistocene megafauna. Quaternary International 217: 131-137. DOI: https://doi.org/10.1016/j.quaint.2009.10.010

McDonald HG, Arroyo-Cabrales J, Alarcón-D I & Espinosa-Martínez DV 2021. First record of Meizonyx salvadorensis (Mammalia, Xenarthra, Pilosa) from Mexico and its phylogenetic position within the Megalonychidae. Journal of Systematic Palaeontology 18: 1829-1851. DOI: 10.1080/14772019.2020.1842816 DOI: https://doi.org/10.1080/14772019.2020.1842816

McDonald HG, Chatters JC & Gaudin TJ 2017. A new genus of megalonychid ground sloth (Mammalia, Xenarthra) from the late Pleistocene of Quintana Roo, Mexico. Journal of Vertebrate Palaeontology 37 DOI: 10.1080/02724634.2017.1307206, 14 pp. DOI: https://doi.org/10.1080/02724634.2017.1307206

McDonald HG, Feranec RS & Miller N 2019. First record of the extinct ground sloth, Megalonyx jeffersonii, (Xenarthra, Megalonychidae) from New York and contributions to its palaeoecology. Quaternary International 530-531: 42-46. DOI: https://doi.org/10.1016/j.quaint.2018.11.021

McDonald HG, Harington CR & De Iuliis G 2000. The ground sloth, Megalonyx, from Pleistocene deposits of the Old Crow Basin, Yukon, Canada. Arctic 53: 213-220. DOI: https://doi.org/10.14430/arctic852

McDonald HG & Jefferson GT 2008. Distribution and habitat of Nothrotheriops (Xenarthra, Nothrotheridae) in the Pleistocene of North America. In X. Wang and L. G. Barnes (Editors.), Geology and Vertebrate Palaeontology of Western and Southern North America, Contributions in Honor of David P. Whistler. Natural History Museum of Los Angeles County Science Series No. 41: 313-331.

McDonald HG & Lundelius Jr. EL 2009. The giant ground sloth, Eremotherium laurillardi, (Xenarthra, Megatheriidae) in Texas. Pp. 407-421 in Albright III LB (ed.). Papers on Geology, Vertebrate Palaeontology, and Biostratigraphy in Honor of Michael O. Woodburne. Museum of Northern Arizona Bulletin 65.

McDonald HG & Pelikan S 2006. Mammoths and mylodonts: Exotic species from two different continents in North American Pleistocene faunas: Quaternary International 142–143: 229–241. doi:10.1016/j.quaint.2005.03.020 DOI: https://doi.org/10.1016/j.quaint.2005.03.020

McDonald JA 1993. Phylogeography and history of the alpine-subalpine flora of northeastern Mexico. In: Ramamoorthy TP, Bye R, Lot A & Fa J (Editors)—Biological diversity of Mexico: origins and distribution: 681–703. Oxford University Press.

McNab BK 1985. Energetics, population biology, and distribution of xenarthrans, living and extinct. In: Montgomery GG (Editor.)—The Evolution and Ecology of Armadillos, Sloths and Vermilinguas: 219–232. Smithsonian Institution Press.

Metcalfe SE, O’Hara SL, Caballero M & Davies SJ 2000. Records of Late Pleistocene– Holocene climate change in Mexico – a review. Quaternary Science Reviews 19: 699– 721. DOI: https://doi.org/10.1016/S0277-3791(99)00022-0

Moore DM 1978. Post-glacial vegetation in the South Patagonian territory of the giant ground sloth, Mylodon. Botanical Journal Linnean Society 77: 177-202. DOI: https://doi.org/10.1111/j.1095-8339.1978.tb01398.x

Naples VL 1989. The feeding mechanism in the Pleistocene ground sloth, Glossotherium: Contributions in Science 415: 1-23. DOI: https://doi.org/10.5962/p.226818

Nunez EF, MacFadden BL, Mead JI & Baez A 2010. Ancient forests and grasslands in the desert: Diet and habitat of Late Pleistocene mammals from Northcentral Sonora, México. Palaeogeography, Palaeoclimatology, Palaeoecology297: 391-400 DOI: https://doi.org/10.1016/j.palaeo.2010.08.021

Omena EC, Lopes da Silva JA, Sial AN, Cherkinsky A & Dantas MAT 2020. Late Pleistocene mesomegaherbivores from Brazilian Intertropical Region: isotopic diet (δ13C), niche differentiation, guilds and palaeoenvironmental reconstruction (δ13C, δ18O). Historical Biology DOI: 10.1080/08912963.2020.1789977 DOI: https://doi.org/10.1080/08912963.2020.1789977

Pansani TR, Muniz FP, Cherkinsky A, Pacheco MLAF & Dantas MAT 2019. Isotopic palaeoecology (δ13C, δ18O) of Late Quaternary megafauna from Mato Grosso do Sul and Bahia States, Brazil. Quaternary Science Reviews. 221:105864. doi:10.1016/j.quascirev.2019.105864. DOI: https://doi.org/10.1016/j.quascirev.2019.105864

Pérez-Crespo VA, Arroyo-Cabrales J, Alva-Valdivia LM, Morales-Puente P, Cienfuegos-Alvarado E, Otero FJ & Ochoa-Castillo P 2014, La palaeodieta de cinco especies de mamíferos herbívoros rancholabreanos de Valsequillo (Puebla, México): Revista Chilena de Antropología 30: 76–82. DOI: https://doi.org/10.5354/0719-1472.2014.36273

Pérez-Crespo VA, Carbot-Chanona G, Morales-Puente P, Cienfuegos-Alvarado E & Otero FJ 2015, Palaeoambiente de la Depresión Central de Chiapas, con base en isótopos estables de carbono y oxígeno: Revista Mexicana de Ciencias Geológicas, 32: 273–282.

Peterson LC & Haug GH 2006. Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeography, Palaeoclimatology, Palaeoecology 234: 97 – 113. DOI: https://doi.org/10.1016/j.palaeo.2005.10.021

Piperno DR 2006. Quaternary environmental history and agricultural impact on vegetation in Central America. Annals of the Missouri Botanical Garden 93: 274–296. DOI: https://doi.org/10.3417/0026-6493(2006)93[274:QEHAAI]2.0.CO;2

Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G & Pääbo S 1998. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281: 402–406. DOI: https://doi.org/10.1126/science.281.5375.402

Polly PD & Eronen JT 2011. Mammal associations in the Pleistocene of Britain: Implications of ecological niche modeling and a method for reconstructing palaeoclimate: In: Ashton N, Lewis S & Stringer C (Editors)—The Ancient Human Occupation of Britain: 279-304. Elsevier Press. DOI: https://doi.org/10.1016/B978-0-444-53597-9.00015-7

Robinson D 2001. 15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution 16: 153-162. DOI: https://doi.org/10.1016/S0169-5347(00)02098-X

Ruez Jr DR. 2005. Diet of Pleistocene Paramylodon harlani (Xenarthra: Mylodontidae): Review of methods and preliminary use of carbon isotopes. Texas Journal of Science 57:329-344.

Rzedowski J 1983. Vegetacion de Mexico. Limusa, Mexico, D.F.

Schubert BW, Graham RW, McDonald HG, Grimm EC & Stafford Jr TW 2004. Latest Pleistocene palaeoecology of Megalonyx jeffersonii and Cervalces scotti. Quaternary Research 61:231-240. DOI: https://doi.org/10.1016/j.yqres.2003.10.005

Schwarcz HP, Dupras TL & Fairgrieve SI 1999. 15N enrichment in the Sahara: in search of a global relationship. Journal of Archaeological Science 26: 629-636. DOI: https://doi.org/10.1006/jasc.1998.0380

Shane LCK 1976. Late-glacial and postglacial palynology and chronology of Darke County, west-central Ohio. Ph.D. dissertation, Kent State University, Kent, OH, 229p.

Shane LCK 1980. Detection of a late glacial climatic shift in central Mid-western pollen diagrams. Abstracts Sixth Biennial Meeting, American Quaternary Association, pp. 171 – 172.

Shaw CA & Quinn JP 1986. Rancho La Brea: a look at coastal southern California’s past. California Geology 39: 123 – 133.

Silva JA, Leal LA, Cherkinsky A & Dantas MAT 2019. Late Pleistocene meso-megamammals from Anagé, Bahia, Brazil: taxonomy and isotopic palaeoecology (δ13C). Journal of South American Earth Sciences 98. doi:10.1016/j.jsames.2019.102362. DOI: https://doi.org/10.1016/j.jsames.2019.102362

Stinnesbeck SR, Frey E Avíles, Olguín J, Stinnesbeck W, Zell P, Mallison H, González González A, Aceves Núñez E, Velázquez Morlet A, Terrazas Mata A, Benavente Sanvicente M, Hering F & Rojas Sandoval C 2017. Xibalbaonyx oviceps, a new megalonychid ground sloth (Folivora, Xenarthra) from the late Pleistocene of the Yucatán Peninsula, Mexico, and its palaeobiogeographic significance. Paläontologische Zeitschrift 91: 245-271. DOI: https://doi.org/10.1007/s12542-017-0349-5

Stinnesbeck SR, Frey E, Avilés Olguín J, González González A, Velázquez Morlet A & Stinnesbeck W 2020. Life and death of the ground sloth Xibalbaonyx oviceps from the Yucatán Peninsula, Mexico, Historical Biology, DOI: 10.1080/08912963.2020.1819998 DOI: https://doi.org/10.1080/08912963.2020.1819998

Stinnesbeck SR, Frey E & Stinnesbeck W 2018. New insights on the palaeogeographic distribution of the Late Pleistocene ground sloth genus Xibalbaonyx along the Mesoamerican Corridor. Journal of South American Earth Sciences, 85: 108–120. DOI: https://doi.org/10.1016/j.jsames.2018.05.004

Stinnesbeck SR, Stinnesbeck W, Frey E, Avilés Olguín J & González González A 2020. Xibalbaonyx exinferis n. sp. (Megalonychidae), a new Pleistocene ground sloth from the Yucatán Peninsula, Mexico, Historical Biology, DOI: 10.1080/08912963.2020.1754817 DOI: https://doi.org/10.1080/08912963.2020.1754817

Thompson RS, Van Devender TR, Martin PS, Foppe T & Long A 1980. Shasta ground sloth (Nothrotheriops shastense Hoffstetter) at Shelter Cave, New Mexico: environment, diet and extinction. Quaternary Research 14: 360-376. DOI: https://doi.org/10.1016/0033-5894(80)90017-4

Toledo VM 1982. Pleistocene changes of vegetation in tropical Mexico. In: Prance GT (Editor)—Biological Diversification in the Tropics: 93–111. Columbia University Press.

Warter JK 1976. Late Pleistocene plant communities—evidence from the Rancho La Brea tar pits. Symposium Proceedings on Plant Communities of Southern California, vol. 2 California Native Plant Society Special Publication, Pasadena: 32–39.

Webb SD 1999. Isolation and interchange: A deep history of South American mammals In: Eisenberg JF Redford KH (Editors)—Mammals of the Neotropics. The Central Neotropics: Ecuador, Peru, Bolivia, Brazil: 13–19. University of Chicago Press.

Webb SD & Perrigo SC 1985. New megalonychid sloths from El Salvador. In: Montgomery GG (Editor)—The Evolution and Ecology of Armadillos, Sloths and Vermilinguas: 113-120. Smithsonian Institution Press.

Webb T III. 1987. The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America. Vegetatio 69: 177–187. DOI: https://doi.org/10.1007/978-94-009-4061-1_18

Whittaker RH 1975. Communities and Ecosystems. 2nd Revised Edition, MacMillan Publishing Co., New York. xi + 158 pp.

Williams JW, Blois JL, Gill JL, Gonzales LM, Grimm EC, Ordonez A, Shuman B & Veloz SD 2013. Model systems for a no-analog future: species associations and climates during the last deglaciation. Climate Change and Species Interactions: Ways Forward 1297: 29–43. DOI: https://doi.org/10.1111/nyas.12226

Williams JW & Jackson ST 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers of Ecology and Environments 5: 475–482. DOI: https://doi.org/10.1890/070037

Williams JW, Shuman BN & Webb III T 2001. Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. Ecology 82: 3346–3362. DOI: https://doi.org/10.1890/0012-9658(2001)082[3346:DAOLQV]2.0.CO;2

Woodburne MO 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution, 17: 245–264. DOI: https://doi.org/10.1007/s10914-010-9144-8

Downloads

Published

2021-09-10

How to Cite

McDonald, H. G. (2021). Yukon to the Yucatan: Habitat partitioning in North American Late Pleistocene ground sloths (Xenarthra, Pilosa). Journal of Palaeosciences, 70((1-2), 237–252. https://doi.org/10.54991/jop.2021.17