Demonstration of process-based reconstruction of annual temperatures from tree ring oxygen isotope

Authors

  • Trina Bose Birbal Sahni Institute of Palaeosciences, 53, University Road, Lucknow 226007, India
  • Supriyo Chakraborty Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune-411008, India

DOI:

https://doi.org/10.54991/jop.2023.1849

Keywords:

Tree ring, Oxygen isotope, Reconstruction, Temperature

Abstract

Forecasting the global warming of the post-industrial period requires knowledge of natural variations in climatic parameters, especially temperature in preceding times. Due to its stable time resolution and known physiochemical formation process, tree ring cellulose isotope datasets have immense potential to yield climatic variability information. The first standardized site-independent  temperature reconstruction model from tree-ring cellulose oxygen isotope data is demonstrated here using data from a montane site in the western Himalayas. This model does not require any statistical calibration and can be directly compared with instrumental or modelled data. The resulting temperature amplitude is dependent on moisture availability and this input is needed to modulate the reconstruction. The present work tests the possibility of input of carbon isotope discrimination as a proxy of relative humidity. This input achieved amplitude control but additional frequency components were introduced to the reconstruction.

सारांश

औद्योगिकीकरण के पूर्व भूमंडलीय ऊष्मीकरण (ग्लोबल वार्मिंग) के पूर्वानुमान हेतु जलवायवीय मापदंडों में प्राकृतिक बदलावों संबंधी, विशेष रूप से पूर्ववर्ती कालों में तापमान से जुड़ी जानकारी आवश्यक है। अपने स्थिर विभेदन काल तथा विदित भौतिक-रसायनिक विन्यास प्रक्रिया के कारण वृक्ष-वलय सेलूलोज़ समस्थानिक डेटासेट जलवायु परिवर्तनीयता संबंधी जानकारी प्रदान करने की असीम क्षमता रखते हैं। पश्चिमी हिमालय में स्थित एक पर्वतीय-स्थल से प्राप्त वृक्ष-वलय सेलूलोज़ ऑक्सीजन समस्थानिक आंकड़ों का उपयोग करके पहला मानकीकृत स्थलीय रूप से निष्पक्ष तापमान पुनर्रचना मॉडल प्रदर्शित किया गया है। इस मॉडल को किसी प्रकार की सांख्यिकीय अंशशोधन की आवश्यकता नहीं है तथा  इसकी तुलना आलेखित या प्रतिरूपित आंकड़े से स्पष्टतया से की जा सकती है। परिणामी तापमान का आयाम आर्द्रता की उपलब्धता पर निर्भर है तथा पुनर्रचना नियमन करने हेतु इस निविष्ट की आवश्यकता है। वर्तमान कार्य, सापेक्षिक आर्द्रता की प्रतिपत्री के रूप में कार्बन समस्थानिक विभेदन-क्षमता को निविष्ट की संभाव्यता प्रमाणित करता है।  इस निविष्ट ने प्रचुर विनियमन प्राप्त किया, परंतु पुनर्रचना हेतु अतिरिक्त आवृत्ति घटकों को प्रस्तुत किए।

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmed M, Anchukaitis K, Buckley BM, Braida M, Borgaonkar HP, Asrat A, Cook ER, Büntgen U, Chase BM, Christie DA et al. 2013. Continental-scale temperature variability during the past two millennia: Supplementary information. Nature Geoscience 6(5): 339-346. DOI: https://doi.org/10.1038/ngeo1797

Ballantyne A, Baker P, Chambers J, Villalba R & Argollo J 2011. Regional differences in South American monsoon precipitation inferred from the growth and isotopic composition of tropical trees. Earth Interactions 15(5): 1-35. DOI: https://doi.org/10.1175/2010EI277.1

Barnosky AD 2014. Palaeontological evidence for defining the Anthropocene. Geological Society London Special Publications 395(1): 149-165. DOI: https://doi.org/10.1144/SP395.6

Borgaonkar HP, Pant GB & Kumar KR 1999. Tree-ring chronologies from western Himalaya and their dendroclimatic potential. IAWA journal 20(3): 295-309. DOI: https://doi.org/10.1163/22941932-90000692

Borgaonkar H, Sikder A & Ram S 2011. High altitude forest sensitivity to the recent warming: A tree-ring analysis of conifers from western Himalaya, India. Quaternary International 236(1): 158-166. DOI: https://doi.org/10.1016/j.quaint.2010.01.016

Bose T, Chakraborty S, Borgaonkar H, Sengupta S & Ramesh R 2014. Estimation of past atmospheric carbon dioxide levels using tree-ring cellulose δ13C. Current Science 107(6): 971-982.

Bose T, Sengupta S, Chakraborty S & Borgaonkar H 2016. Reconstruction of soil water oxygen isotope values from tree ring cellulose and its implications for paleoclimate studies. Quaternary International 425: 387-398. DOI: https://doi.org/10.1016/j.quaint.2016.07.052

Brienen RJ, Helle G, Pons TL, Guyot JL & Gloor M 2012. Oxygen isotopes in tree rings are a good proxy for amazon precipitation and El Niño-Southern Oscillation variability. Proceedings of the National Academy of Sciences 109(42): 16957-16962. DOI: https://doi.org/10.1073/pnas.1205977109

Brohan P, Kennedy JJ, Harris I, Tett SF & Jones PD 2006. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research: Atmospheres 111(D12). DOI: https://doi.org/10.1029/2005JD006548

Cappa CD, Hendricks MB, DePaolo DJ & Cohen RC 2003. Isotopic fractionation of water during evapouration. Journal of Geophysical Research: Atmospheres 108(D16). DOI: https://doi.org/10.1029/2003JD003597

Chinthala BD, Grießinger J, Ranhotra PS, Tomar N, Singh C & Bräuning A 2022. Tree-ring oxygen isotope variations in subalpine firs from the western Himalaya capture spring season temperature signals. Forests 13(3): 437. DOI: https://doi.org/10.3390/f13030437

Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al. 2011. The era-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137(656): 553-597. DOI: https://doi.org/10.1002/qj.828

Evans M 2007. Toward forward modeling for paleoclimatic proxy signal calibration: A case study with oxygen isotopic composition of tropical woods. Geochemistry, Geophysics, Geosystems 8(7). DOI: https://doi.org/10.1029/2006GC001406

Farquhar GD, O’Leary M & Berry J 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology 9(2): 121-137. DOI: https://doi.org/10.1071/PP9820121

Fonti M, Siegwolf R, Kirdyanov A, Knorre A, Trushkina T, Myglan V, Vaganov E, Saurer M et al. 2021. Response of temperature-limited forests to recent moisture changes derived from tree-ring stable carbon isotopes. Russian Journal of Ecology 52(5): 368-375. DOI: https://doi.org/10.1134/S1067413621050052

Harris I, Jones P, Osborn T & Lister D 2013. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset. International Journal of Climatology URL: http://dx.doi.org/10.1002/joc.3711 DOI: https://doi.org/10.1002/joc.3711

Holzkämper S, Kuhry P, Kultti S, Gunnarson B & Sonninen E 2008. Stable isotopes in tree rings as proxies for winter precipitation changes in the Russian Arctic over the past 150 years. Geochronometria 32(1): 37-46. DOI: https://doi.org/10.2478/v10003-008-0025-6

Huang R, Zhu H, Liang E, Grießinger J, Wernicke J, Yu W, Hochreuther P, Risi C, Zeng Y, Fremme A & Sodemann H 2019. Temperature signals in tree-ring oxygen isotope series from the northern slope of the Himalaya. Earth and Planetary Science Letters 506: 455-465. DOI: https://doi.org/10.1016/j.epsl.2018.11.002

Hughes MK 2002. Dendrochronology in climatology-the state of the art. Dendrochronologia 20(1): 95-116. DOI: https://doi.org/10.1078/1125-7865-00011

Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M & Meijer HA 2005. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Baldwin IT, Caldwell MM, Heldmaier G, Jackson RB, Lange OL, Mooney HA, Schulze ED, Sommer U, Ehleringer JR, Dearing MD et al. (Editors)-A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Springer: 83-113. DOI: https://doi.org/10.1007/0-387-27048-5_5

Kress A, Saurer M, Siegwolf RT, Frank DC, Esper J & Bugmann H 2010. A 350-year drought reconstruction from alpine tree ring stable isotopes. Global Biogeochemical Cycles 24(2). DOI: https://doi.org/10.1029/2009GB003613

Lewis SL & Maslin MA 2015. Defining the Anthropocene. Nature 519(7542): 171-180. DOI: https://doi.org/10.1038/nature14258

List RJ 1963. Smithsonian meteorological tables. Smithsonian Institution.

Liu Y, Wang Y, Li Q, Song H, Linderholm, HW, Leavitt SW, Wang R & An Z 2014. Tree-ring stable carbon isotope-based May–July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th Century warming. Quaternary Science Reviews 93: 67-76. DOI: https://doi.org/10.1016/j.quascirev.2014.03.023

Liu Y, Ta W, Li Q, Song H, Sun C, Cai Q, Liu H, Wang L, Hu, S, Sun J et al. 2018. Tree-ring stable carbon isotope-based April June relative humidity reconstruction since AD 1648 in Mt. Tianmu, China. Climate Dynamics 50(5): 1733-1745. DOI: https://doi.org/10.1007/s00382-017-3718-6

Majoube M 1971. Fractionation of oxygen-18 and of deuterium between water and its vapour. Journal Chimie Physique 68: 1423-1436. DOI: https://doi.org/10.1051/jcp/1971681423

Managave S, Sheshshayee M, Borgaonkar H & Ramesh R 2010. Past break-monsoon conditions detectable by high resolution intra-annual δ18O analysis of teak rings. Geophysical Research Letters 37(5). DOI: https://doi.org/10.1029/2009GL041172

Managave S, Sheshshayee M, Ramesh R, Borgaonkar H, Shah S & Bhattacharyya A 2011. Response of cellulose oxygen isotope values of teak trees in differing monsoon environments to monsoon rainfall. Dendrochronologia 29(2): 89-97. DOI: https://doi.org/10.1016/j.dendro.2010.05.002

Mann ME & Jones PD 2003. Global surface temperatures over the past two millennia. Geophysical Research Letters 30(15). DOI: https://doi.org/10.1029/2003GL017814

Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S & Ni F 2008. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences 105(36): 13252-13257. DOI: https://doi.org/10.1073/pnas.0805721105

McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GH, Jalkanen R, Kirchhefer A & Waterhouse JS 2009. Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochimica et Cosmochimica Acta 73(6): 1539-1547. DOI: https://doi.org/10.1016/j.gca.2008.11.041

McCarroll D & Loader NJ 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23(7): 771-801. DOI: https://doi.org/10.1016/j.quascirev.2003.06.017

Mitchell TD & Jones PD 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25(6): 693-712. DOI: https://doi.org/10.1002/joc.1181

Murphy D & Koop T 2005. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society 131(608): 1539-156. DOI: https://doi.org/10.1256/qj.04.94

Roden JS, Lin G & Ehleringer JR 2000. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochimica et Cosmochimica Acta 64(1): 21-35. DOI: https://doi.org/10.1016/S0016-7037(99)00195-7

Sano M, Dimri A, Ramesh R, Xu C, Li Z & Nakatsuka T 2017. Moisture source signals preserved in a 242-year tree-ring δ18O chronology in the western Himalaya. Global and Planetary Change 157: 73-82. DOI: https://doi.org/10.1016/j.gloplacha.2017.08.009

Saurer M, Cherubini P, Reynolds-Henne C, Treydte K, Anderson W & Siegwolf R 2008. An investigation of the common signal in tree ring stable isotope chronologies at temperate sites. Journal of Geophysical Research 113(G4): G04035. DOI: https://doi.org/10.1029/2008JG000689

Sharp Z 2017. Principles of Stable Isotope Geochemistry, 2nd Edition. doi: https://doi.org/10.25844/h9q1-0p82.

Steffen W, Leinfelder R, Zalasiewicz J, Waters CN, Williams M, Summerhayes C, Barnosky AD, Cearreta A, Crutzen P, Edgeworth M et al. 2016. Stratigraphic and earth system approaches to defining the Anthropocene. Earth‘s Future 4(8): 324-345. DOI: https://doi.org/10.1002/2016EF000379

Stern AS, Li KB & Hoch JC 2002. Modern spectrum analysis in multidimensional NMR spectroscopy: comparison of linear-prediction extrapolation and maximum-entropy reconstruction. Journal of the American Chemical Society 124(9): 1982-1993. DOI: https://doi.org/10.1021/ja011669o

Stocker T, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V & Midgley P, eds 2013. IPCC 2013: Summary for policymakers. Cambridge University Press.

Treydte KS, Frank DC, Saurer M, Helle G, Schleser GH & Esper J 2009. Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record. Geochimica et Cosmochimica Acta 73(16): 4635-4647. DOI: https://doi.org/10.1016/j.gca.2009.05.057

Yadav RR & Singh J 2002. Tree-ring-based spring temperature patterns over the past four centuries in western Himalaya. Quaternary Research 57(3): 299-305. DOI: https://doi.org/10.1006/qres.2002.2337

Yadav RR, Braeuning A & Singh J 2011. Tree ring inferred summer temperature variations over the last millennium in western Himalaya, India. Climate Dynamics 36(7): 1545-1554. DOI: https://doi.org/10.1007/s00382-009-0719-0

Yadava AK, Misra KG, Singh V, Misra S, Sharma YK & Kotlia BS 2021. 244-year-long tree-ring-based drought records from Uttarakhand western Himalaya, India. Quaternary International 599: 128-137. DOI: https://doi.org/10.1016/j.quaint.2020.12.038

Downloads

Published

2023-12-22

How to Cite

Bose, T., & Chakraborty, S. (2023). Demonstration of process-based reconstruction of annual temperatures from tree ring oxygen isotope. Journal of Palaeosciences, 72(2), 81–89. https://doi.org/10.54991/jop.2023.1849

Issue

Section

Research Articles