Neoproterozoic Snowball Earth extent inferred from paleosols in California
DOI:
https://doi.org/10.54991/jop.2023.1851Keywords:
Sand wedge, Sorted stone stripe, Paleosol, Cryogenian, Death ValleyAbstract
Gelisol paleosols with sand wedges and sorted stone stripes are reported from the early Cryogenian (717–659 Ma), Surprise Diamictite Member and Sourdough Limestone Member of the Kingston Peak Formation in Redlands Canyon, western Panamint Range, California. The Surprise Diamictite was thus not entirely marine, although glaciomarine sediments and tectonically induced, mass wasting deposits, may be present in other parts of the Kingston Peak Formation. Sand wedge and stone stripe paleosols are evidence of local ice–free land with frigid continental climate at paleolatitude as low as 8 ± 4º from paleomagnetic studies of the Surprise Diamictite. The Sturt glaciation was a dramatic global cooling, but not a global snowball. Bare ground of landslides, alluvial fans, till and loess with mineral nutrients, and microtopographic shelter for complex life on land would have been important for survival of life on Earth from glacial destruction.
सारांश
कैलिफ़ोर्निया में पश्चिमी पैनामिंट श्रेणी की रेडलैंड्स घाटी में किंग्स्टन पीक शैलसमूह के प्रारंभिक क्रायोजेनियन (717-659 मिलियन वर्ष) के दौरान सरप्राइज डायमिक्टाइट सदस्य तथा सौरडोह चूनापत्थर सदस्य से प्राप्त बालू फान (सैंड वेजेज़) एवं छटी हुई प्रस्तर धारियों सहित तुषारभूति पुरनिखात (गेलिसोलपेलियोसोल्स) मिले हैं । इस प्रकार सरप्राइज़ डायमिक्टाइट पूर्णतः समुद्री नहीं थे यद्यपि किंग्सटन पीक शैलसमूह के अन्य भागों में पहले समुद्री (ग्लेशियोमारिन) अवसाद एवं विवर्तनिक (टेक्टोनिक) रूप से प्रेरित, पिंड अपशिष्ट (वेस्टिंग) निक्षेप मौजूद हो सकते हैं। सरप्राइज डायमिक्टाइट के पुराचुंबकीय अध्ययनों से पता चलता है कि बालू फान (सैंड वेज) एवं छंटी हुई प्रस्तर (स्टोन स्ट्राइप) कम से कम 8 ± 4º के पुराउन्नतांश पर शीत महाद्वीपीय जलवायु के साथ स्थानीय हिम-मुक्त भूमि के प्रमाण हैं। स्टर्ट हिमाच्छादन नाटकीय भूमंडलीय शीतलन था, परंतु भूमंडलीय हिमकुंडक नहीं था। भूस्खलन सम्बन्धी अनावृत भूमि, जलोढ़ फैलाव, खनिज पोषक तत्वों से भरपूर जुताई तथा भूमि पर जटिल जीवन के लिए सूक्ष्मस्थलाकृतिक आश्रय, हिमनद विनाश के कारण पृथ्वी पर जीवन जीने के लिए महत्वपूर्ण रहे होंगे।
Downloads
Metrics
References
Aiello IW, Garrison RE, Moore EC, Kastner M & Stakes DS 2001. Anatomy and origin of carbonate structures in a Miocene cold–seep field. Geology 29: 1111−1114. https://doi.org/10.1130/0091–7613(2001)0292.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(2001)029<1111:AAOOCS>2.0.CO;2
Álvaro JJ, Macouin M, Bauluz B, Clausen S & Ader M 2007. The Ediacaran sedimentary architecture and carbonate productivity in the Atar cliffs, Adrar, Mauritania: Palaeoenvironments, chemostratigraphy and diagenesis. Precambrian Research 153: 236−261. https://doi.org/10.1016/j.precamres.2006.11.010. DOI: https://doi.org/10.1016/j.precamres.2006.11.010
Andrew JE 2022. Geologic map of southern Panamint Valley, southern Panamint Range, and central Slate Range, California, USA. Geosphere 18, 726−727. https://doi.org/10.1130/GES02342.1. DOI: https://doi.org/10.1130/GES02342.1
Bahlburg H & Dobrzinksi N 2011. A review of the chemical index of alteration (CIA) and its application to the Neoproterozoic paleolatitudes and climate transitions. In: Arnaud E, Halverson GP, & Shields–Zhou G (Editors)–The Geological Record of Neoproterozoic Glaciations. Geological Society of London Memoir 36: 81 ̶ 92. https://doi.org/10.1144/M36.6. DOI: https://doi.org/10.1144/M36.6
Barbour MM & Farquhar GD 2000. Relative humidity–and ABA–induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell, and Environment 23: 473–485. https://doi.org/10.1046/j.1365–3040.2000.00575.x. DOI: https://doi.org/10.1046/j.1365-3040.2000.00575.x
Barbour MM, Walcroft AS & Farquhar GD 2002. Seasonal variation in d13C and d18O of cellulose from growth rings of Pinus radiata. Plant, Cell, and Environment 25: 1483–1499. https://doi.org/10.1046/j.0016–8025.2002.00931.x. DOI: https://doi.org/10.1046/j.0016-8025.2002.00931.x
Bastida F, Aller J, Toimil NC, Lisle RJ & Bobillo–Ares NC 2007. Some considerations on the kinematics of chevron folds. Journal of Structural Geology 29: 1185−1200. https://doi.org/10.1016/j.jsg.2007.03.010. DOI: https://doi.org/10.1016/j.jsg.2007.03.010
Benn DI, Le Hir G, Bao H, Donnadieu Y, Dumas C, Fleming EJ, Hambrey MJ, McMillan EA, Petronis MS, Ramstein G & Stevenson CT 2015. Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation. Nature Geoscience 8: 704−707. https://doi.org/10.1038/ngeo2502. DOI: https://doi.org/10.1038/ngeo2502
Bergfeld D, Nabelek PI & Labotka TC 1996. Carbon isotope exchange during polymetamorphism in the Panamint Mountains, California, USA. Journal of Metamorphic Geology 14: 199−212. https://doi.org/10.1046/j.1525–1314.1996.05848.x. DOI: https://doi.org/10.1046/j.1525-1314.1996.05848.x
Bestland EA, Retallack GJ, Rice AE & Mindszenty A 1996. Late Eocene detrital laterites in central Oregon: mass balance geochemistry, depositional setting and landscape evolution. Geological Society of America Bulletin 108: 285–302. https://doi.org/10.1130/0016–7606(1996)1082.3.CO;2. DOI: https://doi.org/10.1130/0016-7606(1996)108<0285:LEDLIC>2.3.CO;2
Birkeland PW 1999. Soils and geomorphology. Oxford Univ. Press, Oxford, 448 pp.
Black RF 1973. Cryomorphic processes and micro–relief features, Victoria Land, Antarctica. In: Fahey BD & Thompson RD (Editors)–Research on Polar and Alpine Geomorphology. Norwich, Geoabstracts: 11 ̶ 24.
Black RF 1976a. Periglacial features indicative of permafrost: ice and frost wedges. Quaternary Research 6: 3 ̶ 6. https://doi.org/10.1016/0033–5894(76)90037–5. DOI: https://doi.org/10.1016/0033-5894(76)90037-5
Black RF 1976b. Features indicative of permafrost. Annual Review of Earth and Planetary Sciences 4: 75 ̶ 94. https://doi.org/10.1146/annurev.ea.04.050176.000451. DOI: https://doi.org/10.1146/annurev.ea.04.050176.000451
Black RF 1982. Patterned–ground studies in Victoria Land. Antarctic Journal of the United States 17: 53 ̶ 54. Bockheim JG 1997. Properties and classification of cold desert soils from Antarctica. Soil Science Society of America Journal 61: 224–231. https://doi.org/10.2136/sssaj1997.03615995006100010031x. DOI: https://doi.org/10.2136/sssaj1997.03615995006100010031x
Bockheim JG 2013. Paleosols in the Transantarctic Mountains: indicators of environmental change. Solid Earth Discussions 5: 1007–1029. https://doi.org/10.5194/se–4–451–2013. DOI: https://doi.org/10.5194/sed-5-1007-2013
Bockheim JG 2015. Soil–Forming Factors in Antarctica. In: Bockheim JG (Editor)–The Soils of Antarctica. Springer, Berlin: 5−20. https://doi.org/10.1007/978–3–319–05497–1_2. DOI: https://doi.org/10.1007/978-3-319-05497-1_2
Bockheim JG & McLeod M, 2015. Soils of Central Victoria Land, the McMurdo Dry Valleys. In: Bockheim JG (Editor)–The Soils of Antarctica. Springer, Berlin: 117−148. https://doi.org/10.1007/978–3–319–05497–1_8. DOI: https://doi.org/10.1007/978-3-319-05497-1_8
Boulton GS 1990. Sedimentary and sea level changes during glacial cycles and their control on glacimarine facies architecture. In: Dowdesdell JA & Scourse JD (Editors)–Glaciomarine environments: processes and sediments. Geological Society of London Special Publication 53: 15−52. https://doi.org/10.1144/GSL.SP.1990.053.01.02. DOI: https://doi.org/10.1144/GSL.SP.1990.053.01.02
Brimhall GH, Chadwick OA, Lewis CJ, Compston W, Williams IS, Danti KJ, Dietrich WE, Power ME, Hendricks D & Bratt J 1992. Deformational mass transport and invasive processes in soil evolution. Science 255: 695–702. https://doi.org/10.1126/science.255.5045. DOI: https://doi.org/10.1126/science.255.5045.695
Broz A, Retallack GJ, Maxwell TM & Silva LC 2021. A record of vapour pressure deficit preserved in wood and soil across biomes. Nature Scientific Reports 11: 1−12. https://doi.org/10.1038/s41598–020–80006–9. DOI: https://doi.org/10.1038/s41598-020-80006-9
Campbell IB & Claridge GGC 1987. Antarctica: soils, weathering processes and environment. Elsevier, Amsterdam, 368 pp.
Carlisle D, Davis DL, Kildale MB & Stewart RM 1954. Base metal and iron deposits of southern California. In: Jahns RH (Editor)–Geology of southern California. California Division of Mines Bulletin 1: 41−49.
Chadwick OA, Brimhall GH & Hendricks DM 1990. From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology 3: 369–390. https://doi.org/10.1016/0169–555X(90)90012–F. DOI: https://doi.org/10.1016/0169-555X(90)90012-F
Chan Y, Van Nostrand JD, Zhou J, Pointing SB & Farrell RL 2013. Functional ecology of an Antarctic dry valley. Proceedings of the U.S. National Academy of Sciences 110: 8990−8995. https://doi.org/10.1073/pnas.1300643110. DOI: https://doi.org/10.1073/pnas.1300643110
Chen S, Gagnon AC & Adkins JF 2018. Carbonic anhydrase, coral calcification and a new model of stable isotope vital effects. Geochimica Cosmochimica Acta 236: 179−197. https://doi.org/10.1016/j.gca.2018.02.032. DOI: https://doi.org/10.1016/j.gca.2018.02.032
Church SE, Cox DP, Wooden JL, Tingley JV & Vaughn RB 2005. Base–and precious–metal deposits in the Basin and Range of southern California and southern Nevada—Metallogenic implications of lead isotope studies. Earth Science Reviews 73: 323−346. https://doi.org/10.1016/j.earscirev.2005.04.012. DOI: https://doi.org/10.1016/j.earscirev.2005.04.012
Corsetti FA, Awramik SM & Pierce D 2003. A complex microbiota from snowball Earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proceedings of the U.S. National Academy of Sciences 100: 4399−4404. https://doi.org/10.1073/pnas.0730560100. DOI: https://doi.org/10.1073/pnas.0730560100
Corsetti FA & Kaufman AJ 2003. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geological Society of America Bulletin 115: 916−932. https://doi.org/10.1130/B25066.1. DOI: https://doi.org/10.1130/B25066.1
Corsetti FA, Olcott AN & Bakermans C 2006. The biotic response to Neoproterozoic snowball Earth. Palaeogeography Palaeoclimatology Palaeoecology 232: 114−130. https://doi.org/10.1016/j.palaeo.2005.10.030. DOI: https://doi.org/10.1016/j.palaeo.2005.10.030
Cox RT, Hill AA, Larsen D, Holzer T, Forman SL, Noce T, Gardner C & Morat J 2007. Seismotectonic implications of sand blows in the southern Mississippi Embayment. Engineering Geology 89: 278−299. https://doi.org/10.1016/j.enggeo.2006.11.002. DOI: https://doi.org/10.1016/j.enggeo.2006.11.002
Dalrymple RW, Narbonne GM & Smith L 1985. Eolian action and the distribution of Cambrian shales in North America. Geology 13: 607−610. https://doi.org/10.1130/0091–7613(1985)132.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(1985)13<607:EAATDO>2.0.CO;2
Deynoux M 1982. Periglacial polygonal structures and sand wedges in the Late Precambrian glacial formations of the Taoudeni Basin in Adrar of Mauretania (West Africa). Palaeogeography Palaeoclimatology Palaeoecology 39: 55−70. https://doi.org/10.1016/0031–0182(82)90072–4. DOI: https://doi.org/10.1016/0031-0182(82)90072-4
Deynoux M, Kocurek G & Proust JN 1989. Late Proterozoic periglacial aeolian deposits on the west African platform, Taoudeni Basin, western Mali. Sedimentology 36: 531−549. https://doi.org/10.1111/j.1365–3091.1989.tb02084.x. DOI: https://doi.org/10.1111/j.1365-3091.1989.tb02084.x
Driese SG, Jirsa MA, Ren M, Brantley SL, Sheldon ND, Parker D & Schmitz M 2011. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Research 189: 1−17. https://doi.org/10.1016/j.precamres.2011.04.00. DOI: https://doi.org/10.1016/j.precamres.2011.04.003
Ehleringer JR, Buchmann N, & Flanagan LB 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications 10: 412–422. https://doi.org/10.1890/1051–0761(2000)010[0412:CIRIBC]2.0.CO;2. DOI: https://doi.org/10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2
Ehleringer JR & Cook CS 1998. Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect: preliminary observations based on small flask sampling. Tree Physiology 18: 513–519. https://doi.org/10.1093/treephys/18.8–9.513. DOI: https://doi.org/10.1093/treephys/18.8-9.513
Evans DAD & Raub TD 2011. Neoproterozoic glacial palaeolatitudes: A global update. In: Arnaud E, Halverson GP & Shields–Zhou G (Editors)– The Geological Record of Neoproterozoic Glaciations. Geological Society of London Memoir 36: 93−112. https://doi.org/10.1144/M36. DOI: https://doi.org/10.1144/M36.7
Farquhar GD & Cernusak LA 2012. Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant, Cell, and Environment 35: 1221−1231. https://doi.org/10.1111/j.1365–3040.2012.02484.x. DOI: https://doi.org/10.1111/j.1365-3040.2012.02484.x
Fisk HN 1951. Loess and Quaternary geology of the Lower Mississippi Valley. Journal of Geology 50: 333–356. Food & Agriculture Organization 1974. Soil Map of the World. Vol.1 Legend. Paris, UNESCO, 205 p. Food & Agriculture Organization 1975. Soil Map of the World. Volume II: North America. U.N.E.S.C.O., Paris, 210 p. Food & Agriculture Organization 1978. Soil Map of the World. Volume VIII: North and Central Asia. U.N.E.S.C.O., Paris, 193 p.
Fortier D & Allard M 2004. Late Holocene syngenetic ice–wedge polygons development, Bylot Island, Canadian Arctic Archipelago. Canadian Journal of Earth Sciences 41: 997 ̶ 1012. https://doi.org/10.1139/e04–031. DOI: https://doi.org/10.1139/e04-031
Gallagher TM & Sheldon ND 2013. A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology 41: 647−650. https://doi.org/10.1130/G34074.1. DOI: https://doi.org/10.1130/G34074.1
Gold DA 2018. The slow rise of complex life as revealed through biomarker genetics. Emerging Topics in Life Sciences 2: 191−199. https://doi.org/10.1042/ETLS20170150. DOI: https://doi.org/10.1042/ETLS20170150
Grab S 2005. Aspects of the geomorphology, genesis and environmental significance of earth hummocks (thufur, pounus): miniature cryogenic mounds. Progress in Physical Geography 29: 139−155. https://doi.org/10.1191/0309133305pp440ra. DOI: https://doi.org/10.1191/0309133305pp440ra
Grimley DA, Follmer LR & McKay ED 1998. Magnetic susceptibility and mineral zonations controlled by provenance in loess along the Illinois and central Mississippi River valleys. Quaternary Research 49: 24−36. https://doi.org/10.1006/qres.1997.1947. DOI: https://doi.org/10.1006/qres.1997.1947
Halverson G, Porter S & Shields G 2020. Tonian and Cryogenian Periods. In: Gradstein FM, Ogg JG, Schmitz MD & Ogg GM (Editors)–Geologic Time Scale 2020. Amsterdam: Elsevier: 495−519. https://doi.org/10.1016/B978–0–12–824360–2.00017–6. DOI: https://doi.org/10.1016/B978-0-12-824360-2.00017-6
Hawes I, Jungblut AD, Matys ED & Summons RE 2018. The “dirty ice” of the McMurdo Ice Shelf: Analogues for biological oases during the Cryogenian. Geobiology 16: 369−377. https://doi.org/10.1111/gbi.12280. DOI: https://doi.org/10.1111/gbi.12280
Hayes JL, Riebe CS, Holbrook WS, Flinchum BA & Hartsough PC 2019. Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss. Science Advances 5(9): eaao0834. https://doi.org/10.1126/sciadv.aao083. DOI: https://doi.org/10.1126/sciadv.aao0834
Hoffman PF 2016. Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes? Geobiology 14: 531−542. https://doi.org/10.1111/gbi.12191. DOI: https://doi.org/10.1111/gbi.12191
Hoffman PF, Abbot DS, Ashkenazy Y, Benn DI, Brocks JJ, Cohen PA, Cox GM, Creveling JR, Donnadieu Y, Erwin DH & Fairchild IJ 2017. Snowball Earth climate dynamics and Cryogenian geology–geobiology. Science Advances 3: e1600983. https://doi.org/10.1126/sciadv.1600983. DOI: https://doi.org/10.1126/sciadv.1600983
Hoffman PF & Schrag DP 2002. The Snowball Earth hypothesis: testing the limits of global change. Terra Nova 14: 129−155. https://doi.org/10.1046/j.1365–3121.2002.00408.x. DOI: https://doi.org/10.1046/j.1365-3121.2002.00408.x
Howarth RJ 1971. The Portaskaig Tillite succession (Dalradian) of Co. Donegal. Proceedings of the Royal Irish Academy Section B Biological, Geological and Chemical Sciences 718: 1−36. https://www.jstor.org/stable/20518885.
Huang C–M, Wang C–S & Tang Y 2005. Stable carbon and oxygen isotopes of pedogenic carbonates in Ustic Vertisols: implications for paleoenvironmental change. Pedosphere 15: 539–544.
Isbell RF 1996. The Australian soil classification: revised edition. CSIRO, Melbourne, 144 pp.
Johnston J 1993. Ice wedge casts in the Dalradian of south Donegal: evidence for subaerial exposure of the Boulder Bed. Irish Journal of Earth Sciences 12: 13−26. https://www.jstor.org/stable/30002342.
Kennedy K & Eyles N 2021. Syn‐rift mass flow generated ‘tectonofacies’ and ‘tectonosequences’ of the Kingston Peak Formation, Death Valley, California, and their bearing on supposed Neoproterozoic panglacial climates. Sedimentology 68: 352−381. https://doi.org/10.1111/sed.12781. DOI: https://doi.org/10.1111/sed.12781
Kessler MA & Werner BT 2003. Self–organization of sorted patterned ground. Science 299: 380−383. https://doi.org/10.1126/science.10773. DOI: https://doi.org/10.1126/science.1077309
Kilburn C, Pitcher WS & Shackleton RM 1965. The stratigraphy and origin of the Port Askaig boulder bed series (Dalradian). Geological Journal 4: 343−360. https://doi.org/10.1002/gj.3350040210. DOI: https://doi.org/10.1002/gj.3350040210
Kirschvink JL 1991. Late Proterozoic low–latitude global glaciation: the snowball Earth. In: Schopf JW & Klein C (Editors)–The Proterozoic Biosphere: a multidisciplinary study. Cambridge: Cambridge University Press, 51−52. https://resolver.caltech.edu/CaltechAUTHORS: 20130117– 100718783.
Klappa CF 1979. Lichen stromatolites; criterion for subaerial exposure and a mechanism for the formation of laminar calcretes (caliche). Journal of Sedimentary Research 49: 387−400. https://doi.org/10.1306/212F7752–2B24–11D7–8648000102C1865D. DOI: https://doi.org/10.1306/212F7752-2B24-11D7-8648000102C1865D
Knauth LP, Brilli M & Klonowski S 2003. Isotope geochemistry of caliche developed on basalt. Geochimica Cosmochimica Acta 67: 185–195. https://doi.org/10.1016/S0016–7037(02)01051–7. DOI: https://doi.org/10.1016/S0016-7037(02)01051-7
Kokelj SV, Pisaric MFJ & Burn CR 2007. Cessation of ice–wedge development during the 20th century in spruce forests of eastern Mackenzie Delta, Northwest Territories, Canada. Canadian Journal of Earth Sciences 44: 1503 ̶ 1515. https://doi.org/10.1139/e07–035. DOI: https://doi.org/10.1139/e07-035
Krull ES 1999. Permian palsa mires as paleoenvironmental proxies. Palaios 14: 530−544. https://doi.org/10.2307/3515311. DOI: https://doi.org/10.2307/3515311
Kumpulainen RA 2011. The Neoproterozoic glaciogenic Lillfjället Formation, southern Swedish Caledonides. In: Arnaud E, Halverson GP & Shields–Zhou G (Editors)–The geological record of Neoproterozoic glaciations. Geological Society of London Memoir 36: 629–634. https://doi.org/10.1144/M36.61. DOI: https://doi.org/10.1144/M36.61
Labotka TC, Arden L, Albee AL, Lanphere MA & McDowell SD 1980. Stratigraphy, structure, and metamorphism in the central Panamint Mountains (Telescope Peak quadrangle), Death Valley area, California. Geological Society of America Bulletin 91: 843−933. https://doi.org/10.1130/GSAB–P2–91–843. DOI: https://doi.org/10.1130/GSAB-P2-91-843
Labotka TC, Bergfeld D & Nabelek PI 2000. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California: Comment. Geology 28: 191−2. https://doi.org/10.1130/0091-7613(2000)282.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(2000)028<0191:TDTCCT>2.3.CO;2
Labotka TC, Warasila RL & Spangler RR 1985. Polymetamorphism in the Panamint Mountains, California: A 39Ar‐40Ar study. Journal of Geophysical Research Solid Earth 90: 10359−10371. https://doi.org/10.1029/JB090iB12p10359. DOI: https://doi.org/10.1029/JB090iB12p10359
Leffingwell E de K 1915. Ground ice wedges: the dominant form of ground– ice on the north coast of Alaska. Journal of Geology 23: 635 ̶ 654. DOI: https://doi.org/10.1086/622281
Lohmann KG 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James NP & Choquette PW (Editors)–Paleokarst. Berlin: Springer: 59−80. https://doi.org/10.1007/978–1–4612–3748–8_3. DOI: https://doi.org/10.1007/978-1-4612-3748-8_3
Love GD & Zumberge JA 2021. Emerging patterns in Proterozoic lipid biomarker records: Implications for marine biospheric evolution and the ecological rise of eukaryotes. Cambridge Elements: 1−39. https://doi.org/10.1017/9781108847117. DOI: https://doi.org/10.1017/9781108847117
Ludvigson GA, González LA, Fowle, DA, Roberts JA, Driese SG, Villarreal MA, Smith JJ, Suarez MB & Nordt LC 2013. Paleoclimatic applications and modern process studies of pedogenic siderite. In: Driese SG & Nordt LC (Editors.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology. Society of Economic Paleontologists and Mineralogists Special Publication 104: 79−87. https://doi.org/10.2110/sepmsp.104.01. DOI: https://doi.org/10.2110/sepmsp.104.01
Ludvigson GA, González LA, Metzger RA, Witzke BJ, Brenner RL, Murillo AP & White TS 1998. Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology. Geology 26: 1039–1042. https://doi.org/10.1130/0091–7613(1998)0262.3.CO;2. DOI: https://doi.org/10.1130/0091-7613(1998)026<1039:MSLATU>2.3.CO;2
Maurer BW, Green RA, Wotherspoon LM & Bastin S 2019. The stratigraphy of compound sand blows at sites of recurrent liquefaction: Implications for paleoseismicity studies. Earthquake Spectra 35: 1421−1440. https://doi.org/10.1193/041818EQS097M. DOI: https://doi.org/10.1193/041818EQS097M
Maynard JB 1992. Chemistry of modern soils as a guide to interpreting Precambrian paleosols. Journal of Geology 100: 279–289. DOI: https://doi.org/10.1086/629632
Melim LA, Swart PK & Eberli GP 2004. Mixing zone diagenesis in the subsurface of Florida and the Bahamas. Journal of Sedimentary Research 76: 904–913. https://doi.org/10.1306/042904740904. DOI: https://doi.org/10.1306/042904740904
Miller JM 1985. Glacial and syntectonic sedimentation: The upper Proterozoic Kingston Peak Formation, southern Panamint Range, eastern California. Geological Society of America Bulletin 96: 1537−1553. https://doi.org/10.1130/0016–7606(1985)962.0.CO;2. DOI: https://doi.org/10.1130/0016-7606(1985)96<1537:GASSTU>2.0.CO;2
Moczydłowska M 2008. The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Research 167: 1−15. https://doi.org/10.1016/j.precamres.2008.06.008. DOI: https://doi.org/10.1016/j.precamres.2008.06.008
Morton PK 1965. Geology of the Queen of Sheba Lead Mine: Death Valley, California. California Division of Mines and Geology Special Report 88: 1−18.
Müller, M.J., 1982. Selected climatic data for a global set of standard stations for vegetation science. Springer, Berlin, 338 pp. DOI: https://doi.org/10.1007/978-94-009-8040-2
Murphy CP 1983. Point counting pores and illuvial clay in thin section. Geoderma 31: 133−150. https://doi.org/10.1016/0016–7061(83)90004–6. DOI: https://doi.org/10.1016/0016-7061(83)90004-6
Neaman A, Chorover J & Brantley SL 2005a. Element mobility patterns record organic ligands in soils on early Earth. Geology 33: 117–120. https://doi.org/10.1130/G20687.1. DOI: https://doi.org/10.1130/G20687.1
Neaman A, Chorover J & Brantley SL 2005b. Implications of the evolution of organic acid moieties for basalt weathering over geological time. American Journal of Science 305: 147–185. https://doi.org/10.2475/ajs.305.2.147. DOI: https://doi.org/10.2475/ajs.305.2.147
Nelson LL, Smith EF, Hodgin EB, Crowley JL, Schmitz MD & Macdonald FA 2020. Geochronological constraints on Neoproterozoic rifting and onset of the Marinoan glaciation from the Kingston Peak Formation in Death Valley, California (USA). Geology 48: 1083–1087. https://doi.org/10.1130/G47668.1. DOI: https://doi.org/10.1130/G47668.1
Nelson LL, Ahm ASC, Macdonald FA, Higgins JA & Smith EF 2021. Fingerprinting local controls on the Neoproterozoic carbon cycle with the isotopic record of Cryogenian carbonates in the Panamint Range, California. Earth and Planetary Science Letters 566: 16956. https://doi.org/10.1016/j.epsl.2021.116956. DOI: https://doi.org/10.1016/j.epsl.2021.116956
Nesbitt HW & Young GM 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715–717. https://doi.org/10.1038/299715a0. DOI: https://doi.org/10.1038/299715a0
Newberry RJ 1987. Use of intrusive and calc–silicate compositional data to distinguish contrasting skarn types in the Darwin polymetallic skarn district, California, USA. Mineralium Deposita 22: 207−215. https://doi.org/10.1007/BF00206612. DOI: https://doi.org/10.1007/BF00206612
Newberry RJ, Einaudi MT & Eastman HS 1991. Zoning and genesis of the Darwin Pb–Zn–Ag skarn deposit, California; a reinterpretation based on new data. Economic Geology 86: 960−982. https://doi.org/10.2113/gsecongeo.86.5.960. DOI: https://doi.org/10.2113/gsecongeo.86.5.960
Novoselov AA & de Souza Filho CR 2015. Potassium metasomatism of Precambrian paleosols. Precambrian Research 262: 67−83. https://doi.org/10.1016/j.precamres.2015.02.024. DOI: https://doi.org/10.1016/j.precamres.2015.02.024
Nugteren G, Van den Berghe J, van Huissteden JK & Zhisheng A 2004. A Quaternary climate record based on grain size analysis from the Luochuan loess section on the Central Loess Plateau, China. Global and Planetary Change 41: 167–218. https://doi.org/10.1016/j.gloplacha.2004.01.004. DOI: https://doi.org/10.1016/j.gloplacha.2004.01.004
Óskarsson BV, Riishuus MS & Arnalds O 2012. Climate-dependent chemical weathering of volcanic soils in Iceland. Geoderma 189–190: 635–651. https://doi.org/10.1016/j.geoderma.2012.05.030. DOI: https://doi.org/10.1016/j.geoderma.2012.05.030
Owen G 2003. Load structures; gravity–driven sediment mobilization in the shallow subsurface. In: van Rensbergen P, Hillis RR, Maltman AJ & Morley CK (Editors)–Subsurface Sediment Mobilization. Geological Society of London, London: 21–34. https://doi.org/10.1144/GSL.SP.2003.216.01.0. DOI: https://doi.org/10.1144/GSL.SP.2003.216.01.03
Peckmann J, Goedert JL, Thiel V, Michaelis W & Reitner J 2002. A comprehensive approach to the study of methane‐seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49: 855−873. https://doi.org/10.1046/j.1365–3091.2002.00474.x. DOI: https://doi.org/10.1046/j.1365-3091.2002.00474.x
Pierrehumbert RT 2005. Climate dynamics of a hard Snowball Earth. Journal of Geophysical Research 110: D01111. https://doi.org/10.1029/2004JD005162. DOI: https://doi.org/10.1029/2004JD005162
Pierrehumbert RT, Abbot DS, Voigt A & Koll D 2011. Climate of the Neoproterozoic. Annual Review of Earth and Planetary Sciences 2011. 39: 417–460. https://doi.org/10.1146/annurev–earth–040809–152447. DOI: https://doi.org/10.1146/annurev-earth-040809-152447
Plummer PS & Gostin VA 1981. Shrinkage cracks; desiccation or synaeresis?. Journal of Sedimentary Research 51: 1147−1156. https://doi.org/10.1306/212F7E4B–2B24–11D7–8648000102C1865D. DOI: https://doi.org/10.1306/212F7E4B-2B24-11D7-8648000102C1865D
Prave AR 1999. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: the Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology 27: 339−342. https://doi.org/10.1130/0091–7613(1999)0272.3.CO;2. DOI: https://doi.org/10.1130/0091-7613(1999)027<0339:TDTCCT>2.3.CO;2
Prave AR 2000. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California: Reply. Geology 28: 192. https://doi.org/10.1130/0091–7613(2000)282.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(2000)28<192:TDTCCT>2.0.CO;2
Pye K & Sherwin D 1999. Loess. In: Goudie AS, Livingstone I & Stokes E (Editors)–Aeolian Environments, Sediments and Landforms. Chichester, Wiley: 239−259.
Raffi R & Stenni B 2011. Isotopic composition and thermal regime of ice wedges in Northern Victoria Land, East Antarctica. Permafrost and Periglacial Processes 22: 65 ̶ 83. https://doi.org/10.1002/ppp.701. DOI: https://doi.org/10.1002/ppp.701
Ramsay JG 1974. Development of chevron folds. Geological Society of America Bulletin 85: 1741−1754. https://doi.org/10.1130/0016-7606(1974)852.0.CO;2. DOI: https://doi.org/10.1130/0016-7606(1974)85<1741:DOCF>2.0.CO;2
Retallack GJ 1991. Miocene paleosols and ape habitats of Pakistan and Kenya. New York, Oxford University Press, 346 p.
Retallack GJ 1999a. Carboniferous fossil plants and soils of an early tundra ecosystem. Palaios 14: 324−336. https://doi.org/10.2307/3515460. DOI: https://doi.org/10.2307/3515460
Retallack GJ 1999b. Permafrost palaeoclimate of Permian palaeosols in the Gerringong volcanic facies of New South Wales. Australian Journal of Earth Sciences 46: 11−22. https://doi.org/10.1046/j.1440–0952.1999.00683.x. DOI: https://doi.org/10.1046/j.1440-0952.1999.00683.x
Retallack GJ 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33: 333−336. https://doi.org/10.1130/G21263.1. DOI: https://doi.org/10.1130/G21263.1
Retallack GJ 2011. Neoproterozoic loess and limits to Snowball Earth. Journal of the Geological Society of London 168: 289−308. https://doi.org/10.1144/0016–76492010–0. DOI: https://doi.org/10.1144/0016-76492010-051
Retallack GJ 2013. Ediacaran life on land. Nature 493: 89–92. https://doi.org/10.1038/nature11777. DOI: https://doi.org/10.1038/nature11777
Retallack GJ 2014. Precambrian life on land. The Palaeobotanist 63: 1−15. https://doi.org/10.54991/jop.2014.289. DOI: https://doi.org/10.54991/jop.2014.289
Retallack GJ 2015a. Silurian vegetation stature and density inferred from fossil soils and plants in Pennsylvania, USA. Journal of the Geological Society of London 172: 693–709. https://doi.org/10.1144/jgs2015–022. DOI: https://doi.org/10.1144/jgs2015-022
Retallack GJ 2015b. Late Ordovician glaciation initiated by early land plant evolution, and punctuated by greenhouse mass–extinctions. Journal of Geology 123: 509–538. https://doi.org/10.1086/683663. DOI: https://doi.org/10.1086/683663
Retallack GJ 2016. Field and laboratory tests for recognition of Ediacaran paleosols. Gondwana Research 36: 94–110. https://doi.org/10.1016/j.gr.2016.05.001. DOI: https://doi.org/10.1016/j.gr.2016.05.001
Retallack GJ 2021. Paleosols and weathering leading up to Snowball Earth in central Australia. Australian Journal of Earth Sciences 68: 1122−1148. https://doi.org/10.1080/08120099.2021.1906747. DOI: https://doi.org/10.1080/08120099.2021.1906747
Retallack GJ 2022a. Towards a glacial subdivision of the Ediacaran Period, with an example of the Boston Bay Group, Massachusetts. Australian Journal of Earth Sciences 69: 223−250. https://doi.org/10.1080/08120099.2021.1954088. DOI: https://doi.org/10.1080/08120099.2021.1954088
Retallack GJ 2022b. Soil salt and microbiome diversification over the past 3700 million years. Palaeogeography Palaeoclimatology Palaeoecology 598: 111016. https://doi.org/10.1016/j.palaeo.2022.111016. DOI: https://doi.org/10.1016/j.palaeo.2022.111016
Retallack GJ 2023. Why was there a Neoproterozoic Snowball Earth? Precambrian Research 385: 106952. https://doi.org/10.1016/j.precamres.2022.10695. DOI: https://doi.org/10.1016/j.precamres.2022.106952
Retallack GJ & Broz AP 2020. Ediacaran and Cambrian paleosols in central Australia. Palaeogeography Palaeoclimatology Palaeoecology 560: 110047. https://doi.org/10.1016/j.palaeo.2020.110047. DOI: https://doi.org/10.1016/j.palaeo.2020.110047
Retallack GJ, Broz AP, Lai LSH & Gardner K 2021a. Neoproterozoic marine chemostratigraphy, or eustatic sea level change? Palaeogeography Palaeoclimatology Palaeoecology 562: 110155. https://doi.org/10.1016/j.palaeo.2020.11015. DOI: https://doi.org/10.1016/j.palaeo.2020.110155
Retallack GJ, Chen Z–Q, Huan Y & Feng HY 2021b. Oxidizing atmosphere and life on land during the late Paleoproterozoic outset of the “boring billion”. Precambrian Research 364: 106361. https://doi.org/10.1016/j.precamres.2021.106361. DOI: https://doi.org/10.1016/j.precamres.2021.106361
Retallack GJ, Gose BN & Osterhout JT 2015. Periglacial paleosols and Cryogenian paleoclimate near Adelaide, South Australia. Precambrian Research 263: 1−18. https://doi.org/10.1016/j.precamres.2015.03.002. DOI: https://doi.org/10.1016/j.precamres.2015.03.002
Retallack GJ & Huang C 2010. Depth to gypsic horizon as a proxy for paleoprecipitation in paleosols of sedimentary environments. Geology 38: 403−406. https://doi.org/10.1130/G30514.1. DOI: https://doi.org/10.1130/G30514.1
Retallack GJ, Krull ES, Thackray GD & Parkinson D 2013. Problematic urn–shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa. Precambrian Research 235: 71−87. https://doi.org/10.1016/j.precamres.2013.05.015. DOI: https://doi.org/10.1016/j.precamres.2013.05.015
Retallack GJ & Mao X–G 2019. Paleoproterozoic (ca. 1.9 Ga) megascopic life on land in Western Australia. Palaeogeography Palaeoclimatology Palaeoecology 532: 109266. https://doi.org/10.1016/j.palaeo.2019.109266. DOI: https://doi.org/10.1016/j.palaeo.2019.109266
Retallack GJ, Marconato A, Osterhout JT, Watts KE & Bindeman IN 2014. Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. Journal of the Geological Society of London 171: 709–722. https://doi.org/10.1144/jgs2014–016. DOI: https://doi.org/10.1144/jgs2014-016
Retallack GJ & Mindszenty A 1994. Well preserved late Precambrian paleosols from northwest Scotland. Journal of Sedimentary Research 64: 264−281. https://doi.org/10.1306/D4267D7A–2B26–11D7–8648000102C1865D. DOI: https://doi.org/10.1306/D4267D7A-2B26-11D7-8648000102C1865D
Runnegar B 2000. Loophole for snowball Earth. Nature 405: 403−404. https://doi.org/10.1038/35013168. DOI: https://doi.org/10.1038/35013168
Sánchez–Baracaldo P, Raven JA, Pisani D & Knoll AH 2017. Early photosynthetic eukaryotes inhabited low–salinity habitats. Proceedings of the U.S. National Academy of Sciences 114: E7737−E7745. https://doi.org/10.1073/pnas.1620089114. DOI: https://doi.org/10.1073/pnas.1620089114
Scotese CR 2021. An atlas of Phanerozoic paleogeographic maps: the seas come in and the seas go out. Annual Reviews of Earth and Planetary Science 49: 679−728. https://doi.org/10.1146/annurev–earth–081320-064052. DOI: https://doi.org/10.1146/annurev-earth-081320-064052
Sheldon ND & Retallack GJ 2001. Equation for compaction of paleosols due to burial. Geology 29: 247−250. https://doi.org/10.1130/0091–7613(2001)0292.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(2001)029<0247:EFCOPD>2.0.CO;2
Sheldon ND, Retallack GJ & Tanaka S 2002. Geochemical climofunctions from North American soils and application to paleosols across the Eocene– Oligocene boundary in Oregon. Journal of Geology 110: 687–696. DOI: https://doi.org/10.1086/342865
Sheldon ND & Tabor NJ 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science Reviews 95: 1−52. https://doi.org/10.1016/j.earscirev.2009.03.004. DOI: https://doi.org/10.1016/j.earscirev.2009.03.004
Shinohara N & Nishitani K 2021. Cryogenian origin and subsequent diversification of the plant cell–wall enzyme XTH family. Plant Cell Physiology 62: 1874−1889. https://doi.org/10.1093/pcp/pcab093. DOI: https://doi.org/10.1093/pcp/pcab093
Shoshoni Language Project 2019. Website: Shoshoniproject.utah.edu, accessed December 31, 2019. Soil Survey Staff 2014. Keys to Soil Taxonomy. Washington DC: Natural Resources Conservation Service, 358 p.
Spencer AM 1971. Late Precambrian glaciation in Scotland. Memoir of the Geological Society of London 6: 1−100. DOI: https://doi.org/10.1144/GSL.MEM.1971.006.01.02
Spencer AM 1985. Mechanisms and environments of deposition of Late Precambrian geosynclinal tillites: Scotland and East Greenland. Palaeogeography Palaeoclimatology Palaeoecology 51: 143−157. https://doi.org/10.1016/00310182(85)90083–5. DOI: https://doi.org/10.1016/0031-0182(85)90083-5
Stace HCT, Hubble GD, Brewer R, Northcote KH, Sleeman JR, Mulcahy MJ & Hallsworth EG 1968. A handbook of Australian soils. Adelaide: Rellim, 435 p. DOI: https://doi.org/10.1097/00010694-196910000-00013
Streletskaya I, Vasiliev A & Hanno M 2011. Isotopic composition of syngenetic ice wedges and palaeoclimatic reconstruction, western Taimyr, Russian Arctic. Permafrost and Periglacial Processes 22: 101–106. https://doi.org/10.1002/ppp.707. DOI: https://doi.org/10.1002/ppp.707
Sun D, Bloemendal J, Rea DK, An Z, Vandenberghe J, Lu H, Su R & Liu T 2004. Bimodal grain–size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55: 325−334. https://doi.org/10.1016/S0341–8162(03)00109–7. DOI: https://doi.org/10.1016/S0341-8162(03)00109-7
Surge DM, Savarese M, Dodd JR & Lohmann KC 1997. Carbon isotopic evidence for photosynthesis in Early Cambrian oceans. Geology 25: 503–506. https://doi.org/10.1130/0091–7613(1997)0252.3.CO;2. DOI: https://doi.org/10.1130/0091-7613(1997)025<0503:CIEFPI>2.3.CO;2
Swineford A & Frye JC 1951. Petrography of the Peoria loess in Kansas. Journal of Geology 59: 306−322. DOI: https://doi.org/10.1086/625870
Talbot MR 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology Isotope Geoscience Section 80: 261–279. https://doi.org/10.1016/0168–9622(90)90009–2. DOI: https://doi.org/10.1016/0168-9622(90)90009-2
Tedrow JCF 1966. Polar desert soils. Soil Science Society of America Journal 30: 381−387. https://doi.org/10.2136/sssaj1966.03615995003000030024. DOI: https://doi.org/10.2136/sssaj1966.03615995003000030024x
Trindade RI & Macouin M 2007. Palaeolatitude of glacial deposits and palaeogeography of Neoproterozoic ice ages. Comptes Rendus Geosciences 339: 200−211. https://doi.org/10.1016/j.crte.2007.02.006. DOI: https://doi.org/10.1016/j.crte.2007.02.006
Ufnar DF, Gröcke DR & Beddows PA 2008. Assessing pedogenic calcite stable–isotope values: can positive linear covariant trends be used to quantify palaeo–evaporation rates? Chemical Geology 256: 46−51. https://doi.org/10.1016/j.chemgeo.2008.07.02. DOI: https://doi.org/10.1016/j.chemgeo.2008.07.022
Ugolini FC 1986. Pedogenic zonation in the well–drained soils of the arctic regions. Quaternary Research 26: 100−120. https://doi.org/10.1016/0033–5894(86)90086–4. DOI: https://doi.org/10.1016/0033-5894(86)90086-4
Van Vliet–Lanoë B 1991. Differential frost heave, load casting and convection: conversing mechanisms; a discussion of the origin of cryoturbation. Permafrost and Periglacial Processes 2: 123−139. https://doi.org/10.1002/ppp.3430020207. DOI: https://doi.org/10.1002/ppp.3430020207
Van Vliet–Lanoë B 2010. Frost action. In: Stoops G, Marcelino V & Mees F (Editors)–Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam: 81–108. DOI: https://doi.org/10.1016/B978-0-444-53156-8.00006-4
Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG & Strauss H 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161: 59–88. https://doi.org/10.1016/S0009–2541(99)00081–9. DOI: https://doi.org/10.1016/S0009-2541(99)00081-9
Weinberger R 2001. Evolution of polygonal patterns in stratified mud during desiccation: the role of flaw distribution and layer boundaries. Geological Society of America Bulletin, 113: 20−31. https://doi.org/10.1130/0016–7606(2001)1132.0.CO;2. DOI: https://doi.org/10.1130/0016-7606(2001)113<0020:EOPPIS>2.0.CO;2
Wernicke B, Axen GJ & Snow JK 1988. Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada. Geological Society of America Bulletin 100: 1738−1757. https://doi.org/10.1130/0016–7606(1988)1002.3.CO;2. DOI: https://doi.org/10.1130/0016-7606(1988)100<1738:BARETA>2.3.CO;2
Wheeler RL 2002, Distinguishing seismic from non–seismic soft–sediment structures: criteria from seismic–hazard analysis. In: Ettensohn FR, Rast N & Brett CE (Editors)–Ancient Seismites. Geological Society of America Special Paper 359: 1–11. https://doi.org/10.1130/0–8137–2359–0.1. DOI: https://doi.org/10.1130/0-8137-2359-0.1
Williams EG, Wright LA & Troxel BW 1974. The Noonday Dolomite and equivalent stratigraphic units, southern Death Valley region, California. In: Wright LA, Troxel BW, Williams EG, Roberts MT & Diehl PE (Editors)–Guidebook: Death Valley Region, California and Nevada. Boulder: Geological Society of America: 73−77.
Williams GE 1986. Precambrian permafrost horizons as indicators of palaeoclimate. Precambrian Research 32: 233−242. https://doi.org/10.1016/0301–9268(86)90008–2. DOI: https://doi.org/10.1016/0301-9268(86)90008-2
Williams GE, Gostin VA, McKirdy DM & Preiss WV 2008. The Elatina glaciation, late Cryogenian (Marinoan Epoch), South Australia: sedimentary facies and palaeoenvironments. Precambrian Research 163: 307–331. https://doi.org/10.1016/j.precamres.2007.12.00. DOI: https://doi.org/10.1016/j.precamres.2007.12.001
Wright LA, Troxel BW, Williams EG, Roberts MT & Diehl PE 1976. Precambrian sedimentary environments of the Death Valley region, eastern California. In: Wright L & Troxel B (Editors)–Geologic features of Death Valley, California. California Division of Mines and Geology Special Report 106: 7−15.
Young GM & Long DGF 1976. Ice–wedge casts from the Huronian Ramsay Lake Formation (>2,300 m.y. old) near Espanola, Ontario, Canada. Palaeogeography Palaeoclimatology Palaeoecology 19: 191–200. https://doi.org/10.1016/0031–0182(76)90013–. DOI: https://doi.org/10.1016/0031-0182(76)90013-4
Žárský J, Žárský V, Hanáček M & Žárský V 2021. Cryogenian glacial habitats as a plant terrestrialisation cradle–the origin of the anydrophytes and Zygnematophyceae split. Frontiers in Plant Sciences 12: 735020. https://doi.org/10.3389/fpls.2021.735020. DOI: https://doi.org/10.3389/fpls.2021.735020
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Palaeosciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.