Early Eocene biotic assemblage from the sedimentary deposits of the Tarkeshwar Lignite Mine, Gujarat and its palaeoenvironmental implications


  • Prem Raj Uddandam Birbal Sahni Institute of Palaeosciences, 53, University Road, Lucknow 226007, India
  • Priya Agnihotri Birbal Sahni Institute of Palaeosciences, 53, University Road, Lucknow 226007, India
  • Shailesh Agrawal Birbal Sahni Institute of Palaeosciences, 53, University Road, Lucknow 226007, India
  • Hukam Singh Birbal Sahni Institute of Palaeosciences, 53, University Road, Lucknow 226007, India




Amber, Cambay Basin, Dinoflagellate cysts, Eocene, Gujarat, Vertebrates


The Palaeogene biota and the palaeoenvironmental history from the low latitudes are remarkably well–preserved in the
open–cast lignite deposits from Western India. Lignite sequences of the Cambay Shale Formation (Gujarat) have been a major
source to understand the concept of early evolution of fossils including flora, arthropods, vertebrates fauna, and several aquatic
forms during the Early Eocene. The study deals with an extensive record of amber inclusions and extracted pollen, vertebrate
fragments, dinoflagellate cysts and Carbon isotopes from the lignite and associated sediments from the Tarkeshwar Lignite Mine
to add insights into the palaeoenvironment and depositional conditions of the Cambay Basin during the Early Eocene period. The
current study demonstrates that throughout the late Palaeocene and early Eocene epoch, the palaeoenvironment changed from
low land, marshy (lower portion), to shallow marine environment, presumably due to hyperthermal event PETM (middle part).
Age diagnostic taxa, viz. Auxiodinium longispinosum, Apectodinium parvum and early wetzelielloid (Vallodinium? sp.) excursion
provide late Palaeocene–early Eocene period (~56–53 Ma) for the dinocyst interval in the middle part of the section. A pronounced
negative Carbon Isotope Excursion (CIE) in the middle part is correlated to the second Eocene Thermal maximum (53.7 Ma),
which is a globally recorded hyperthermal event. During the ETM–2 warming, the rise in pCO2 caused warm, humid conditions
as well as a rise in sea level, which may have contributed to the establishment of constrained shallow marine environments in the
examined middle unit sedimentary succession. Floral (spore–pollens, leaf, wood, seed, fruits) and faunal assemblages (Crocodiles,
fish remains, amber insects) revealed the prevalence of a dense tropical luxurious rain forest (floral and faunal) near shore during
the ETM–2 in the Tarkeshwar Lignite Mines, Cambay Basin.


Download data is not yet available.


Metrics Loading ...


Bajpai S, Kapur VV, Das DP, Tiwari BN, Saravanan N & Sharma R 2005a. Early Eocene land mammals from the Vastan Lignite Mine, District Surat, Gujarat, western India. Journal of the Palaeontological Society of India 50(1): 101–113.

Bajpai S, Kapur VV, Thewissen JGM, Das DP, Tiwari BN, Sharma R & Saravanan N 2005b. Early Eocene primates from Vastan Lignite Mine, Gujarat, western India. Journal of the Palaeontological Society of India 50: 43–54.

Bajpai S, Kapur VV, Thewissen JGM, Das DP & Tiwari BN 2006a. New Early Eocene Cambay there Perissodactyla, Mammalia from the Vastan Lignite Mine Gujarat, India and an evaluation of Cambay their relationships. Journal of the Palaeontological Society of India 51(1): 101–110.

Bajpai S, Thewissen JGM, Kapur VV, Tiwari BN & Sahni A 2006b. Eocene and Oligocene Sirenians Mammalia from Kachchh, India. Journal of Vertebrate Palaeontology 26(2): 400–410. DOI: https://doi.org/10.1671/0272-4634(2006)26[400:EAOSMF]2.0.CO;2

Bajpai S, Kapur, VV & Thewissen JGM 2009a. Creodont and condylarth from Cambay Shale Early Eocene ~55–54 Ma, Vastan Lignite Mine, Gujarat, western India. Journal of the Palaeontological Society of India 54: 103–109.

Bajpai S, Thewissen JGM & Sahni A 2009b. The origin and early evolution of whales: macroevolution documented on the Indian Subcontinent. Journal of Biosciences 34: 1–13. DOI: https://doi.org/10.1007/s12038-009-0060-0

Bowen GJ & Zachos JC 2010. Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum. Nature Geoscience 3: 866–869. DOI: https://doi.org/10.1038/ngeo1014

Clementz M, Bajpai S, Ravikant V & Thewissen JGM, Saravanan N, Singh IB & Prasad V 2011. Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology 391: 15–18. DOI: https://doi.org/10.1130/G31585.1

Dickens GR, Castillo MM & Walker JCG 1997. A blast of gas in the latest Paleocene: simulating first–order effects of massive dissociation of oceanic methane hydrate. Geology 25(3): 259–262. DOI: https://doi.org/10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2

Dickens GRO, Neil JR, Rea DK & Owen RM 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10: 965–971. DOI: https://doi.org/10.1029/95PA02087

Engel MS, Grimaldi DA, Nascimbene PC & Singh H 2011. The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae Isoptera. ZooKeys 148: 105–123. DOI: https://doi.org/10.3897/zookeys.148.1797

Engel MS, Ortega–Blanco J, Nascimbene P & Singh H 2013. The bees of Early Eocene cambay amber Hymenoptera: apidae. Journal of Mellitology 25: 1–12. DOI: https://doi.org/10.17161/jom.v0i25.4659

Folie A, Rana RS, Rose KD, Sahni A, Kumar K, Singh L & Smith T 2012. Early Eocene frogs from Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica 58(3): 511–524. DOI: https://doi.org/10.4202/app.2011.0063

Garg R & Ateequzzaman K 2000. Dinoflagellate cysts from the Lakadong Sandstone, Cherrapunji area: biostratigraphical and palaeoenvironmental significance and relevance to sea level changes in the Upper Palaeocene of the Khasi Hills, South Shillong Plateau, India. Palaeobotanist 49(1–3): 461–484. DOI: https://doi.org/10.54991/jop.2000.160

Garg R, Ateequzzaman K, Prasad V, Tripathi SKM, Singh IB, Jauhri AK & Bajpai S 2008. Age–diagnostic dinoflagellate cysts from the lignite–bearing sediments of the Vastan Lignite Mine, Surat District, Gujarat, western India. Journal of the Palaeontological Society of India 53: 99–105.

Garg R, Prasad V, Thakur B, Singh IB & Khowaja A 2011. Dinoflagellate cysts from the Naredi Formation, Southwestern Kutch, India: Implications on age and palaeoenvironment. Journal Palaeontological Society of India 56: 201–218.

Gradstein FM, Ogg JG, Schmitz MD & Ogg GM (Editors) 2020. Geologic time scale 2020. Elsevier. DOI: https://doi.org/10.1127/nos/2020/0634

Grimaldi D, Engel MS & Singh H 2013. Coniopterygidae Neuroptera: Aleuropteryginae in amber from the Eocene of India and the Miocene of Hispaniola. American Museum Novitiates 20133770: 20–39. DOI: https://doi.org/10.1206/3770.2

Iakovleva AI 2017. Did the PETM trigger the first important radiation of wetzelielloideans? Evidence from France and northern Kazakhstan. Palynology 413: 311–338. DOI: https://doi.org/10.1080/01916122.2016.1173121

Iakovleva AI, Quesnel F & Dupuis C 2021. New insights on the Late Paleocene− Early Eocene dinoflagellate cyst zonation for the Paris and Dieppe basins. Bulletin de la Société Géologique de France 192: 1–18. https://doi.org/10.1051/bsgf/2021035. DOI: https://doi.org/10.1051/bsgf/2021035

Jaramillo C, Ochoa D, Contreras L, Pagani M, Carvajal–Ortiz H, Pratt LM, Krishnan S, Cardona A, Romero M, Quiroz L & Rodriguez G 2010. Effects of rapid global warming at the Paleocene–Eocene boundary on neotropical vegetation. Science 3306006: 957–961. DOI: https://doi.org/10.1126/science.1193833

Khozyem H, Adatte T, Keller G & Spangenberg JE 2021. Organic carbon isotope records of the Paleocene–Eocene Thermal Maximum event in India provide new insights into mammal origination and migration. Journal of Asian Earth Sciences 104736. https://doi.org/10.1016/j.jseaes.2021.104736. DOI: https://doi.org/10.1016/j.jseaes.2021.104736

Köthe A 1988. Biostratigraphy of the Surghar Range, Salt Range, Sulaiman Range and the Kohat area, according to Jurassic through Paleogene calcareous nannofossils and Paleogene dinoflagellates: Geologisches Jahrbuch, pt. B71: 3–87.

Lawrence JF, Ślipiński A, Seago A, Thayer M, Newton A & Marvaldi A 2011. Phylogeny of the Coleoptera based on adult and larval morphology. Annales Zoologici 61: 1–217. DOI: https://doi.org/10.3161/000345411X576725

Nagori ML, Khosla SC & Jakhar SR 2013 Middle Eocene Ostracoda from the Tarkeshwar Lignite Mine, Cambay Basin, Gujarat. Journal of the Geological Society of India 81: 514–520. DOI: https://doi.org/10.1007/s12594-013-0066-y

Powell AJ 1992. Dinoflagellate cysts of the Tertiary System. A Stratigraphic Index of Dinoflagellate Cysts 155–251. DOI: https://doi.org/10.1007/978-94-011-2386-0_4

Prasad GVR, Verma O, Flynn JJ & Goswami A 2013. A new Late Cretaceous vertebrate fauna from the Cauvery Basin, South India: implications for Gondwanan paleobiogeography. Journal of Vertebrate Paleontology 33(6): 1260–1268. DOI: https://doi.org/10.1080/02724634.2013.777348

Prasad V, Farooqui A, Tripathi SKM, Garg R & Thakur B 2009. Evidence of Late Palaeocene–Early Eocene equatorial rain forest refugia in southern Western Ghats, India. Journal of Biosciences 34: 777–797. DOI: https://doi.org/10.1007/s12038-009-0062-y

Prasad V, Utescher T, Sharma A, Singh IB, Garg R, Gogoi B, Srivastava J, Uddandam PR & Joachimski MM. 2018. Low–latitude vegetation and climate dynamics at the Paleocene–Eocene transition–a study based on multiple proxies from the Jathang section in northeastern India. Palaeogeography, Palaeoclimatology, Palaeoecology 497: 139–56. DOI: https://doi.org/10.1016/j.palaeo.2018.02.013

Punekar J & Saraswati PK 2010. Age of the Vastan Lignite in context of some oldest Cenozoic fossil mammals from India. Journal of the Geological Society of India 76: 63–68. DOI: https://doi.org/10.1007/s12594-010-0076-y

Rage JC, Folie A, Rana RS, Singh H, Rose KD & Smith T 2008. A diverse snake fauna from the Early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica 533: 391–403. DOI: https://doi.org/10.4202/app.2008.0303

Rana RS, Kumar K & Singh H 2004. Vertebrate fauna from the subsurface Cambay Shale Lower Eocene, Vastan Lignite Mine, Gujarat, India. Current Science 87(2): 1726–1733.

Rao MR, Sahni A, Rana RS & Verma P 2013. Palynostratigraphy and depositional environment of Vastan Lignite Mine, Early Eocene, Gujarat, western India. Journal of Earth System Science 122: 289–307. DOI: https://doi.org/10.1007/s12040-013-0280-4

Rust J, Singh H, Rana RS, McCann T, Singh L, Anderson K, Sarkar N, Nascimbene PC, Stebner F, Thomas JC, Kraemer MS, Williams CJ, Engel MS, Sahni A & Grimaldi D 2010. Biogeographic and evolutionary implications of a Diverse Palaeobiota in Amber from the Early Eocene of India. Proceedings of the National Acadamy of Sciences USA 107 43: 1–6. DOI: https://doi.org/10.1073/pnas.1007407107

Sadowski EM, Beimforde C, Gube M, Rikkinen J, Singh H, Seyfullah LJ, Heinrichs J, Nascimbene PC, Reitner J & Schmidt AR 2012. The anamorphic genus Monotosporella Ascomycota from Eocene amber and from modern Agathis resin. Fungal biology 116 10: 1099–1110. DOI: https://doi.org/10.1016/j.funbio.2012.08.003

Sahni A, Saraswati PK, Rana RS, Kumar K, Singh H, Alimohammadian H, Sahni N, Rose KD, Singh L & Smith T 2006. Temporal constraints and depositional palaeoenvironments of the Vastan Lignite Sequence, Gujarat: analogy for the Cambay Shale hydrocarbon source rock. Indian Journal of Petroleum Geology 15: 1–20.

Samant B, Mohabey DM, Srivastava P & Thakre D 2014. Palynology and clay mineralogy of the Deccan volcanic associated sediments of Saurashtra, Gujarat: Age and paleoenvironments. Journal of Earth System Science 123: 219–32. DOI: https://doi.org/10.1007/s12040-013-0390-z

Samanta A, Bera MK, Ghosh R, Bera S, Fillet T, Pande K, Rathore SS, Rai J & Sarkar A 2013a. Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene–Eocene boundary in India indicate intensification of tropical precipitation? Paleogeography, Palaeoclimatology, Palaeoecology 387: 91–203. DOI: https://doi.org/10.1016/j.palaeo.2013.07.008

Samanta A, Sarkar A, Bera MK, Rai J & Rathore SS 2013b. Late Paleocene–Early Eocene carbon isotope stratigraphy from a near–terrestrial tropical section and antiquity of Indian mammals. Journal of Earth System Science 122: 163–171. DOI: https://doi.org/10.1007/s12040-012-0259-6

Singh A, Thakur OP & Singh BD 2012. Petrographic and depositional characteristics of Tarkeshwar Lignite deposits Cambay Basin, Gujarat. Journal of the Geological Society of India 80: 329–340. DOI: https://doi.org/10.1007/s12594-012-0151-7

Singh H, Samant B, Adatte T & Khozyem H 2014. Diverse palynoflora from amber and associated sediments of Tarkeshwar Lignite Mine, Surat District, Gujarat, India. Current Science 106(7): 930–932.

Singh H, Shukla A & Mehrotra RC 2016. A fossil coconut fruit from the Early Eocene of Gujarat. Journal of the Geological Society of India 87: 268–270. DOI: https://doi.org/10.1007/s12594-016-0394-9

Singh H, Prasad M & Wappler T 2019. An Early Eocene floral assemblage from the Cambay Shale (Tarkeshwar Lignite Mine) formation, Gujarat: palaeoclimatic and phytogeographic implications. Journal of Palaeontological Society of India 64(2): 184–226.

Singh VP, Singh BD, Mathews RP, Mendhe VA, Agnihotri P, Mishra S, Radhwani M, Dutta S, Subramanian KA, Singh A & Singh H 2021. Petrographical–geochemical characteristics and floral–faunal compositions of the Valia Lignite deposits from Cambay Basin Gujarat, western India. International Journal of Coal Geology 248: doi.org/10.1016/j.coal.2021.103866. DOI: https://doi.org/10.1016/j.coal.2021.103866

Ślipiński A 2007. Australian ladybird beetles (Coleoptera: Coccinellidae): their biology and classification. Canberra: Australian Biological Resources Study.

Smith T, Kumar K, Rana RS, Folie,A, Solé F, Noiret C, Steeman T, Sahni A & Rose KD 2016. New Early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities. Geoscience Frontiers 7: 969–1001. DOI: https://doi.org/10.1016/j.gsf.2016.05.001

Steeman T 2020. Paleocene–Eocene dinoflagellate cysts from Africa, India, and Belgium. Universiteit Gent. Faculteit Wetenschappen.

Szawaryn K 2019. Unexpected diversity of whitefly predators in Eocene Baltic amber–new fossil Serangium species (Coleoptera: Coccinellidae). Zootaxa 4571(2): 270–276. DOI: https://doi.org/10.11646/zootaxa.4571.2.7

Sudhakar R & Basu DN 1973. A reappraisal of the Paleogene stratigraphy of southern Cambay Basin. Bulletin of Oil and Natural Gas Commission 10: 55–76.

Thakur B, Srivastava J, Uddandam P, Manoj MC & Prasad V 2015. Role of sedimentary processes and environmental factors in determining the distribution pattern of diatoms and marine/terrestrial palynomorphs in a tropical coastal wetland. Journal of Palaeontological Society of India 60: 71–84.

Williams GL, Fensome RA & MacRae RA 2017. DINOFLAJ3. American Association of Stratigraphic Palynologists, Data Series no. 2. http://dinoflaj.smu.ca/dinoflaj3.




How to Cite

Uddandam, P. R., Agnihotri, P. ., Agrawal, S., & Singh, H. (2023). Early Eocene biotic assemblage from the sedimentary deposits of the Tarkeshwar Lignite Mine, Gujarat and its palaeoenvironmental implications. Journal of Palaeosciences, 72(2), 127–139. https://doi.org/10.54991/jop.2023.1864



Research Articles

Most read articles by the same author(s)