Prospects of Astrogeology and Astrobiology researches in India: Ladakh as an example
DOI:
https://doi.org/10.54991/jop.2021.24Keywords:
Ladakh, Cold–arid desert, Mars analogue research, Astrobiology, AstrogeologyAbstract
Ladakh sector of the Trans–Himalayan region in India shows a strong fidelity as an analogue of Mars. It is dry, cold arid desert, has abundant rocky ground with dust devils, loose rock blanketing the mountain slopes, segregated ground ice/permafrost, rock glaciers, sand dunes, drainage networks, catastrophic flooding sequences, making it geomorphologically similar as an early Mars analogue. Even for the geochemical fidelity in Ladakh volcanic rocks (basalt); serpentinites, saline lakes, active and fossil hydrothermal systems exist which can give a clue to the processes and chemistry of the Martian grounds. As far as exobiological fidelity is concerned we have permafrost (evidence of water in the past), increased UV and cosmic radiation flux, reduced atmospheric pressure, hot springs (some rich in boron). Hence, Ladakh environment, characters by freezing temperatures, limited precipitation, open water in rivers and lakes, comparatively low atmospheric pressure, thermal springs, and relatively high ultraviolet flux, is an analogue for the Noachian epoch on Mars. Ladakh is surely a treat for geographers, geologists and in recent years also for the astrogeologist’s and astrobiologist’s as well, with its lunar/martian landscapes; exposures of sedimentary, metamorphic and igneous rock types; glacial, fluvial lacustrine sediments and active climatic and tectonic processes. This article demonstrated the many opportunities for Mars analogue research, mentioning the sedimentary deposits of Ladakh with examples from the variety of sediment exposures along the Indus River and explores possibilities for the future astro work sites–be it the landforms carved from the glacial, fluvial, lacustrine and aeolian deposits to study the sedimentary processes, the hyper saline lakes, the permafrost and the hot springs to study the extremophiles or the million year emplacements of the rocks to study the geochemical constituents.
सारांश
भारत में ट्रांस-हिमालयी क्षेत्र का लद्दाख सेक्टर मंगल के अनुरूप एक मजबूत आधुनिक ऐनालॉग प्रदर्शित करता है। यह सूखा, ठंडा शुष्क रेगिस्तान है, धूल के साथ-साथ प्रचुर मात्रा में यहाँ चट्टानी जमीन है, पहाड़ की ढलानों को ढंकने वाली चट्टानें, अलग-अलग तलस्थ-हिम, रॉक ग्लेशियर, रेत के टीले, जल निकासी नेटवर्क, आपाति बाढ़ अनुक्रम, इसे भू-आकृति के अनुरूप प्रारंभिक मंगल ग्रह के समान बनाते हैं। यहां तक कि लद्दाख ज्वालामुखीय चट्टानों (बेसाल्ट) में भू-रासायनिक निष्ठा हेतु; सर्पेंटिनाइट्स, खारी झीलें, सक्रिय और जीवाश्म हाइड्रोथर्मल सिस्टम मौजूद हैं जो मंगल के मैदानों की प्रक्रियाओं और रसायन विज्ञान का सुराग दे सकते हैं। जहां तक एक्सोबायोलॉजिकल फिडेलिटी का संबंध है, हमारे पास पर्माफ्रॉस्ट (अतीत में पानी के सबूत), बढ़ी हुई पराबैंगनी और कॉस्मिक रेडिएशन फ्लक्स, कम वायुमंडलीय दबाव, गर्म झरने (बोरॉन में कुछ समृद्ध) हैं। इसलिए, लद्दाख का वातावरण, बर्फ़ीली तापमान, सीमित वर्षा, नदियों और झीलों में खुला पानी, तुलनात्मक रूप से कम वायुमंडलीय दबाव, थर्मल स्प्रिंग्स और अपेक्षाकृत उच्च पराबैंगनी प्रवाह के लक्षण, मंगल ग्रह पर नोचियन युग के अनुरूप है। लद्दाख निश्चित रूप से भूगोलवेत्ताओं, भूवैज्ञानिकों और हाल के वर्षों में ज्योतिषविदों के लिए भी अपने चंद्र/मार्टियन परिदृश्यों के लिए अवसादी, कायांतरित और आग्नेय शैल प्रकारों का उद्भासन; हिमनद, नदीय सरोवर तलछट और सक्रिय जलवायु और विवर्तनिक प्रक्रियाएं के कारण भी महत्वपूर्ण हैं। इस लेख ने सिंधु नदी के साथ-साथ तलछट के विभिन्न प्रकारों के उदाहरणों के साथ लद्दाख के तलछटी निक्षेपों का उल्लेख करते हुए मंगल के अनुरूप अनुसंधान के लिए कई अवसरों का प्रदर्शन किया और भविष्य के खगोल कार्य स्थलों के लिए संभावनाओं की पड़ताल की - चाहे वह हिमनदों से उकेरी गई भू-आकृतियाँ हों, नदी के किनारे, तलछटी प्रक्रियाओं, अति लवणीय झीलों, पर्माफ्रॉस्ट और गर्म झरनों का अध्ययन करने के लिए लेसीजाइन और वातज जमाव चरमराशि का अध्ययन करने के लिए या भू-रासायनिक घटकों का अध्ययन करने के लिए चट्टानों के लाखों वर्ष के विस्थापन के लिए।
Downloads
Metrics
References
Aitchison JC, Davis AM, & Pointing S 2003. Life in the extreme: Halophilic and Thermophilic Organisms from Tibet. Abstracts of the 18th Himalaya-Karakoram-Tibet workshop.
Ali SN, Quamar MF, Phartiyal B &Sharma A 2018. Permafrost researches in Indian Himalaya: an utmost need to speed up. Journal of Climate Change 4(1): 33-36. DOI: https://doi.org/10.3233/JCC-180004
Baker VR 1981. The geomorphology of Mars. Progress in Physical Geography: Earth and Environment 5(4): 473-513. DOI: https://doi.org/10.1177/030913338100500401
Balme MR& Gallagher C 2009. An equatorial periglacial landscape on Mars. Earth and Planetary Science Letters 285(1–2): 1-15. DOI: https://doi.org/10.1016/j.epsl.2009.05.031
Bandfield JL, Hamilton VE, Christensen PR & McSween HY 2004. Identification of quartzofeldspathic materials on Mars. Journal of Geophysical Research 109: E10009. DOI: https://doi.org/10.1029/2004JE002290
Barbieri R & Cavalazzi B 2014. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field. Challenges 5: 430-443. DOI: https://doi.org/10.3390/challe5020430
Blöthe JH, Munack H, Korup O, Fülling A, Garzanti E, Resentini A & Kubik PW2014. Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin. Quaternary Science Reviews 94: 102–119. DOI: https://doi.org/10.1016/j.quascirev.2014.04.011
Blumthaler M, Ambach W &Ellinger, R 1997. Increase in solar UV radiation with altitude. Journal of Photochemistry and Photobiology B: Biology 39(2): 130-134. DOI: https://doi.org/10.1016/S1011-1344(96)00018-8
Brough S, Hubbard B & Hubbard A 2019. Area and volume of mid-latitude glacier-like forms on Mars. Earth and Planetary Science Letters 507: 10-20. DOI: https://doi.org/10.1016/j.epsl.2018.11.031
Brown ET, Bendick R, Bourlès DL, Gaur V, Molnar P, Raisbeck GM & Yiou F2002. Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. Journal of Geophysical Research 107: ESE 7-1-ESE 7-13. DOI: https://doi.org/10.1029/2000JB000100
Burbank DW &Fort MB 1985. Bedrock control on glacial limits: examples from the Ladakh and Zanskar ranges, North-western Himalaya, India. Journal of Glaciology 31: 143-149. DOI: https://doi.org/10.1017/S0022143000006389
Burtman VS &Molnar P 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Geological Society of America Special Papers 281: 76. DOI: https://doi.org/10.1130/SPE281-p1
Čapková J, Margaryan H, Kubatova A, Novák P & Peknicova J 2015. Target antigens for Hs-14 monoclonal antibody and their various expression in normozoospermic and asthenozoospermic men. Basic and clinical andrology. https://doi.org/10.1186/s12610-015-0025-0. DOI: https://doi.org/10.1186/s12610-015-0025-0
Carbol NA & Grin EO 2010. Searching for lakes on Mars: four decades of exploration. In: Carbol NA & Grin EO (Editors) - Lakes on Mars. Elsevier: 1-29. https://doi.org/10.1016/B978-0-444-52854-4.00001-5. DOI: https://doi.org/10.1016/B978-0-444-52854-4.00001-5
Cabrol NA, Grin EA, Zippi P, Noffke N&Winter D 2018.Evolution of Altiplanic Lakes at the Pleistocene/Holocene Transition: A Window into Early Mars Declining Habitability, Changing Habitats, and Biosignatures. In Cabrol NA & Grin NA (Editors) - From Habitability to Life on Mars. Elsevier:153-177. DOI: https://doi.org/10.1016/B978-0-12-809935-3.00006-2
Čapková K, Hauer T, Řeháková K, & Doležal J 2016.Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crustsof Western Himalaya. Microbial Ecology 71: 113 –123. DOI: https://doi.org/10.1007/s00248-015-0694-4
Chahal P, Kumar A, Sharma PC, Sundriyal YP & Srivastava P 2020. A preliminary assessment of the geological evidence of the mega floods in the upper zanskar catchment, NW Himalaya. Journal Palaeontological Society of India 65: 64-72.
Chan MA & Netoff DI 2017. A terrestrial weathering and wind abrasion analog for mound and moat morphology of Gale crater, Mars. Geophysical Research Letters 44: 4000–4007. DOI: https://doi.org/10.1002/2017GL072978
Clarke JDA, McGuirk S& Pandey S2020. Inverted dune swales, Hunder, Ladakh, India. Physical Geography: https://doi.org/10.1080/02723646.2020.1858556 DOI: https://doi.org/10.1080/02723646.2020.1858556
Coleman NM 2015. Hydrographs of a Martian flood from the breach of Galilaei Crater. Geomorphology 236: 90-108. DOI: https://doi.org/10.1016/j.geomorph.2015.01.034
Conway SJ & Mangold N 2013. Evidence for Amazonian mid-latitude glaciation on Mars from impact crater asymmetry. Icarus 225(1): 413-423. DOI: https://doi.org/10.1016/j.icarus.2013.04.013
Cossetti C, Crestini C, Saladino R & Di Mauro E 2010. Borate Minerals and RNA Stability. Polymers 2(3): 211-228. DOI: https://doi.org/10.3390/polym2030211
Craig J, Absar A, Bhat G, Cadel G, Hafiz M, Hakhoo N, Kashkari R,Moore J, Ricchiuto TE, Thurow J &Thusu B 2013. Hot springs andthe geothermal energy potential of Jammu Kashmir State, NW Himalaya,India. Earth-Science Reviews 126: 156–177. DOI: https://doi.org/10.1016/j.earscirev.2013.05.004
Demske D, Tarasov PE, Wünnemann B & Riedel F 2009. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation dynamics in the Trans- Himalaya recorded in the pollen profile from high-altitude Tso Kar Lake, Ladakh, NW India. Palaeogeography Palaeoclimatology Palaeoecology 279: 172–185. DOI: https://doi.org/10.1016/j.palaeo.2009.05.008
Dimri DB, Baranwal M & Biswas UK 1983. Integrated geophysical studies in Tso Kar Basin, District Ladakh, J. & K., India. Indian Miner.37(2): 39–46.
Diniega S, Hansen CJ, Allen A, Grigsby N, Li Z, Perez T &Chojnacki M 2017. Dune-slope activity due to frost and wind throughout the north polar erg, Mars. Geological Society Special Publication 467: https://doi.org/10.1144/SP467.6 DOI: https://doi.org/10.1144/SP467.6
Djokic T, Van Kranendonk MJ, Campbell KA, Walter MR& Ward CR2017. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nature Communications 8: https://doi.org/10.1038/ncomms15263. DOI: https://doi.org/10.1038/ncomms15263
Dortch JM, Dietsch C, Owen LA, Caffee MW & Ruppert K 2011. Episodic fluvial incision of rivers and rock uplift in the Himalaya and Trans-himalaya. Journal Geological Society of London 168: 783–804. DOI: https://doi.org/10.1144/0016-76492009-158
Dortch JM, Owen LA & Caffee MW 2013. Timing and climatic drivers for glaciation across semi-arid western Himalayan–Tibetan orogen. Quaternary Science Reviews: 78: 188–208. DOI: https://doi.org/10.1016/j.quascirev.2013.07.025
Fernandez-Turiel JF, Garcia-Valles M, Gimeno-Torrente D, Saavedra-Alonso J &Martinez-Manent S 2005. The hot spring and geyser sinters of El Tatio, Northern Chile. Sedimentary Geology 180: 125–147. DOI: https://doi.org/10.1016/j.sedgeo.2005.07.005
Fukushi K, Sekine Y, Sakuma H, Morida K & Wordsworth R 2019. Semiarid climate and hyposaline lake on early Mars inferred from reconstructed water chemistry at Gale. Nature Communications 10: 4896. DOI: https://doi.org/10.1038/s41467-019-12871-6
Goudge TA, Fassett CI & Mohrig D 2018. Incision of paleolake outlet canyons on Mars from overflow flooding. Geology 47 (1): 7–10. DOI: https://doi.org/10.1130/G45397.1
Greeley R, Arvidson RE, Barlett PW, Blaney D, Cabrol NA, Christensen PR, Fergason RL, Golombek MP, Landis GA, Lemmon MT, McLennan SM, Maki JN, Michaels T, Moersch JE, Neakrase LDV, Rafkin SCR, Richter L, Squyres SW de Souza Jr P A, Sullivan RJ, Thompson SD & Whelley PL 2006. Gusev crater: Wind-related features and processes observed by the Mars Exploration Rover Spirit. Journal of Geophysical Research Planets111: E02S09. DOI: https://doi.org/10.1029/2005JE002491
Grotzinger J &Milliken R 2012. Sedimentary Geology of Mars. SEPM Special Publication 102, 276. DOI: https://doi.org/10.2110/pec.12.102
Häder DP & Cabrol NA 2018. UV and Life Adaptation Potential on Early Mars: Lessons from Extreme Terrestrial Analogs. In:Cabrol NA & Grin NA (Editors) - From Habitability to Life on Mars. Elsevier: 233-248. DOI: https://doi.org/10.1016/B978-0-12-809935-3.00009-8
Huang C, Zhang Q & Liu F 1989. A preliminary study of paleovegetation and palaeoclimate in the later period of Late Pleistocene in the Bangong Co Lake region of Xigang. J. Nat. Resour. 4: 247–253.
Hurowitz JA, Grotzinger JP, Fischer WW, McLennan SM, Milliken RE, Stein N, Vasavada AR,Blake DF, Dehouck E, Eigenbrode JL,Fairén AG,Frydenvang J, Gellert R, Grant JA, Gupta S, Herkenhoff KE, Ming DW, Rampe EB, Schmidt ME, Siebach KL, Stack-Morgan
K, Sumner DY, Wiens C2017. Redox stratification of an ancient lake in Gale crater, Mars. Science 356(6341): eaah6849. DOI: https://doi.org/10.1126/science.aah6849
Hutchinson GE 1937. Limnological Studies in Indian Tibet. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 35(1-6): 134–177. DOI: https://doi.org/10.1002/iroh.19370350110
Juyal N 2010. Cloud burst-triggered debris flows around Leh. Current Science 99(9):1166-1167.
Kadish SJ, Head JW, Parsons RL & Marchant DJ 2008. The Ascraeus Mons fan-shaped deposit: Volcano–ice interactions and the climatic implications of cold-based tropical mountain glaciations.Icarus 197(1): 84-109. DOI: https://doi.org/10.1016/j.icarus.2008.03.019
Kotlia BS, Shukla UK, Bhalla MS, Mathur PD & Pant CC 1997. Quaternary fluvio-lacustrine deposits of the Lamayuru basin, Ladakh Himalaya: preliminary multidisciplinary investigations. Geological Magazine 134: 807–815. DOI: https://doi.org/10.1017/S0016756897007826
Kumar A & Srivastava P 2017. The role of climate and tectonics in aggradation and incision of the Indus River in the Ladakh Himalaya during the late Quaternary. Quaternary Research 87: 363-385.
Kumar A, Srivastava P & Meena NK 2017. Late Pleistocene aeolian activity in the cold desert of Ladakh: a record from sand ramps. Quaternary International 443: 13-28. DOI: https://doi.org/10.1016/j.quaint.2016.04.006
Kumar A & Srivastava P 2018a. Landscape of the Indus River.In: Singh D (Editor)-The Indian Rivers.Springer Hydrogeology: 47-59. DOI: https://doi.org/10.1007/978-981-10-2984-4_4
Kumar A & Srivastava P 2018b. The role of climate and tectonics in aggradation and incision of the Indus River in the Ladakh Himalaya during the late Quaternary. Quaternary Research (3): 363 – 385. DOI: https://doi.org/10.1017/qua.2017.19
Lanza NL, Fischer WW, Wiens RC, Grotzinger J, Ollila AM, Cousin A, Anderson RB, Clark, BC, Gellert R, Mangold N, Maurice S, Le Mouélic S, Nachon M, Schmidt M, BergerJ, Clegg SM, Forni O, Hardgrove C, Melikechi N, Newsom HE & Sautter V 2014. High manganese concentrations in rocks at Gale crater, Mars. Geophysical Research Letters 41: https://doi.org/10.1002/2014GL060329. DOI: https://doi.org/10.1002/2014GL060329
McSween HY, Taylor GJ &Wyatt MB 2009. Elemental Composition of the Martian Crust. Science 324(5928): 736-739. DOI: https://doi.org/10.1126/science.1165871
Mellon MT, Malin MC, Arvidson RE, Searls ML, Sizemore HG, Heet TL, Lemmon MT, Keller HU & Marshall J 2009. The periglacial landscape at the Phoenix landing site, Journal of Geophysical Research 114: E00E06. DOI: https://doi.org/10.1029/2009JE003418
Mujtaba SAI, Lal R, Saini HS, Kumar P & Pant NC 2017. Formation and breaching of two palaeolakes around Leh, Indus valley, during the late Quaternary, GeologicalSociety London Special Publications 462: S462-S463. DOI: https://doi.org/10.1144/SP462.3
Nag D & Phartiyal B 2015. Climatic variations and geomorphology of the Indus River valley, between Nimo and Batalik, Ladakh (NW Trans Himalayas) during Late Quaternary, Quaternary International 371: 87–101. DOI: https://doi.org/10.1016/j.quaint.2014.08.045
Nag D, Phartiyal B & Singh DS 2016. Sedimentary characteristics of palaeolake deposits along the Indus River valley, Ladakh, Trans-Himalaya: Implications for the depositional environment. Sedimentology 63: 1765–1785. DOI: https://doi.org/10.1111/sed.12289
Nag D, Phartiyal B & Joshi M 2021. Late Quaternary tectono-geomorphic forcing vis-a-vis topographic evolution of Indus catchment, Ladakh, India. Catena 199: 105103. DOI: https://doi.org/10.1016/j.catena.2020.105103
Norin E 1982. Reports from the scientific expedition to the north western provinces of China under the leader-ship of Dr. Sven Hedin, the Sino-Swedish Expedition. Sven Hedin Central Asia Atlas. Mem. Maps, 3 (1): The Pamirs, Kunlun, Karakoram and Chang Tang regions. Publ. 41, I Geogr.5, pp. 1–61.
Owen LA, Caffee MW, Bovard KR, Finkel RC & Sharma MC 2006. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, Northern India. Geological Society of America Bulletin 118: 383–392. DOI: https://doi.org/10.1130/B25750.1
Pacifici A, Komatsu G &Pondrelli M 2009. Geological evolution of Ares Vallis on Mars: Formation by multiple events of catastrophic flooding, glacial and periglacial processes. Icarus 202 (1): 60. https://doi.org/10.1016/j.icarus.2009.02.029 DOI: https://doi.org/10.1016/j.icarus.2009.02.029
Pandey S, Clarke J, Preeti Nema N, Bonaccorsi R, Som S, Sharma M, Phartiyal B, Rajamani S, Mogul R, Martin-Torres J, Vaishampayan P, Blank J, Steller L, Srivastava A, Singh R, Mcguirk S, Zorzano M, Güttler J, Mendaza T, Soria-Salinas A, Ahmad S, Ansari A, Singh V, Mungi C & Bapat N 2019. Ladakh: diverse, high-altitude extreme environments for off-earth analogue and astrobiology research. International Journal of Astrobiology 1–21. https://doi.org/10.1017/S1473550419000119 DOI: https://doi.org/10.1017/S1473550419000119
Pant RK, Phadtare NR, Chamyal LS & Juyal N 2005. Quaternary deposits in Ladakh and Karakoram Himalaya: a treasure trove of the palaeoclimate records.Current Science 88: 1789–1798.
Phartiyal B, Sharma A, Upadhyay R, Ram-Awatar & Sinha AK 2005. Quaternary geology, tectonics and distribution of palaeo- and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya - A study based on field observations. Geomorphology 65: 241–256. DOI: https://doi.org/10.1016/j.geomorph.2004.09.004
Phartiyal B, Sharma A & Kothyari GC 2013. Damming of River Indus during Late Quaternary in Ladakh Region of Trans-Himalaya, NW India: Implications to Lake formation-climate and tectonics. Chinese Science Bulletin 58: 142–155. DOI: https://doi.org/10.1360/tb-2013-suppl008
Phartiyal B, Singh R & Kothyari GC 2015. Late-Quaternary geomorphic scenario due to changing depositional regimes in the Tangtse Valley, Trans-Himalaya, NW India. Palaeogeography, Palaeoclimatology, Palaeoecology 422:11-24. https://doi.org/10.1016/j.palaeo.2015.01.013 DOI: https://doi.org/10.1016/j.palaeo.2015.01.013
Phartiyal B, Singh R & Nag D 2018. Trans and Tethyan-Himalayan Rivers-in reference to Ladakh and LahaulSpiti, NW Himalaya, India. In: Singh DS(Editor)- The Indian Rivers: An Introduction for Science and Society. Springer Hydrogeology: 367-382. DOI: https://doi.org/10.1007/978-981-10-2984-4_29
Phartiyal B, Singh R, Joshi P, & Nag D 2020a. Late-Holocene climatic record from a glacial lake in Ladakh range, Trans-Himalaya, India, Holocene30: 1029-1042. DOI: https://doi.org/10.1177/0959683620908660
Phartiyal B, Kapur VV, Nag N and Sharma A 2020b. Spatio-temporal climatic variations during the last five millennia in Ladakh Himalaya (India) and its links to archaeological finding(s) (including coprolites) in a palaeoecological and palaeoenvironmental context: A reappraisal. Quaternary International https://doi.org/10.1016/j.quaint.2020.11.025 DOI: https://doi.org/10.1016/j.quaint.2020.11.025
Phartiyal B, Singh R, Nag D, Sharma A, Agnihotri R, Prasad V, Yao T, Yao P, Balasubramanian K, Joshi P, Gahlaud SKS and Thakur B. 2021. Reconstructing climate variability during the last fourmillennia from Trans-Himalaya (Ladakh-Karakorum, India) using multiple proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 562, 110142. DOI: https://doi.org/10.1016/j.palaeo.2020.110142
Rasmussen KL&Houze Jr. RA 2012. A Flash-Flooding Storm at the Steep Edge of High Terrain: Disaster in the Himalayas. American Meteorological Society 93:1714–1724. DOI: https://doi.org/10.1175/BAMS-D-11-00236.1
Řeháková K, Chlumská Z, and Doležal J 2011. Soil Cyanobacterial and Microalgal Diversity in DryMountains of Ladakh, NW Himalaya, as Related to Site, Altitude, and Vegetation. Microbial Ecology 62:337–346. DOI: https://doi.org/10.1007/s00248-011-9878-8
Ruff SW &Farmer JD 2016. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications7: 13554. https://doi.org/10.1038/ncomms13554 DOI: https://doi.org/10.1038/ncomms13554
Sangode SJ, Sinha R, Phartiyal B, Chauhan OS, Mazari RK, Bagati TN, Suresh N, Mishra S, Kumar R & Bhattacharjee P 2007. Environmental magnetic studies on some Quaternary sediments of varied depositional settings in the Indian sub-continent. Quaternary International159: 102-118. DOI: https://doi.org/10.1016/j.quaint.2006.08.015
Sangode SJ, Rawat S, Meshram DC, Phadtare NR & Suresh N 2013. Integrated mineral magnetic and lithologic studies to delineate dynamic modes of depositional conditions in the Leh valley Basin, Ladakh Himalaya, India. Journal Geological Society of India 82: 107–120. DOI: https://doi.org/10.1007/s12594-013-0129-0
Sangode SJ & Mesram DC. Rawat S, Kulkarni YR, Chate D & Gudadhe S 2017. Sedimentary and Geomorphic Signatures of a Cloud burst and triggered flash floods in the Indus valley of Ladakh Himalaya. Himalayan Geology 38: 12-29.
Sarkar R, Edgett K, Ghosh D, Porwal A & Singh P 2019. Tectonic evolution of Juventae Chasma, Mars, and the deformational and depositional structural attributes of the four major light-toned rock exposures therein. Icarus. 333: 199–233. 10.1016/j.icarus.2019.05.032. DOI: https://doi.org/10.1016/j.icarus.2019.05.032
Sekar B, Rajagopalan G & Bhauacharyya A 1994. Chemical analysis and I4C dating of sediment core from Tsokar lake, Ladakh and its implications on climatic changes. Current Science 67: 36-39
Sharma, S., Shukla, A. D., Bartarya, S. K., Marh, B. S. and Juyal, N.
The Holocene oods and their afnity to climatic variability in
the western Himalaya, India. Geomorphology, 290: 317-334
Sharma, S., Shukla, A. D., Bartarya, S. K., Marh, B. S. and Juyal, N.
The Holocene oods and their afnity to climatic variability in
the western Himalaya, India. Geomorphology, 290: 317-334
Sharma, S., Shukla, A. D., Bartarya, S. K., Marh, B. S. and Juyal, N.
The Holocene oods and their afnity to climatic variability in
the western Himalaya, India. Geomorphology, 290: 317-334
Shukla A, Ray D & Bhattacharya S 2017. Sulfate mineral from hot springs in cold desert (Ladakh, India): analogue to Martian sulfate deposit? Lunar and Planetary Science Conference 1964: 1939.
Shukla A, Sharma S, Rana N, Bisht P & Juyal N 2019. Optical chronology and climatic implication of glacial advances from the southern Ladakh Range, NW Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology 539: 109505. DOI: https://doi.org/10.1016/j.palaeo.2019.109505
Sinclair HD, Mudd SM, Dingle E, Hobley DEJ,Robinson R & WalcottR 2017. Squeezing river catchments through tectonics: shortening and erosion across the Indus Valley, NW Himalaya. Geological Society of America Bulletin 129: 203–217. DOI: https://doi.org/10.1130/B31435.1
Sinha R, Vijayan S, Shukla AD, Das P &Bhattacharya F 2018. Gullies and debris-flows in Ladakh Himalaya, India: a potential Martian analogue. In: Conway SJ, Carrivick JL, Carling, PA, Haas De T & Harrison TN (Editors) - Martian Gullies and their Earth Analogues. Geological Society of London Special Publications 467. https://doi.org/10.1144/SP467.9 DOI: https://doi.org/10.1144/SP467.9
Steller LH, Nakamura E, Ota T, Sakaguchi C, Sharma M& Van Kranendonk MJ2019.Boron Isotopes in the Puga Geothermal System, India, and Their Implications for the Habitat of Early Life. Astrobiology 19(12): 1459-1473. DOI: https://doi.org/10.1089/ast.2018.1966
Tiwari S, Rai S, Bartarya S, Gupta A & Negi M 2016. Stable isotopes (δ13C, DIC, δD, δ18O) and geochemical characteristics of geothermal springs of Ladakh and Himachal (India): Evidence for CO2 discharge in northwest Himalaya. Geothermics 64: 314-330. DOI: https://doi.org/10.1016/j.geothermics.2016.06.012
Thayyen RJ, Dimri AP, Kumar P& Agnihotri G 2013. Study of cloudburst and flash floods around Leh, India, during August 4–6, 2010. Natural Hazards 65:2175–2204. DOI: https://doi.org/10.1007/s11069-012-0464-2
Wordsworth RD 2016. The Climate of Early Mars. Annual Review of Earth and Planetary Sciences 44: 381-408. DOI: https://doi.org/10.1146/annurev-earth-060115-012355
Wray J, Hansen S, Dufek J, Swayze GA, Murchie SL, Seelos FP, Skok JR, Irwin RP& Ghiorso MS 2013. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience 6: 1013–1017. DOI: https://doi.org/10.1038/ngeo1994
Wünnemann B, Reinhardt C, Kotlia BS& Riedel F 2008. Observations on the relationship between lake formation, permafrost activity and lithalsa development during the last 20,0000 years in the Tso Kar basin, Ladakh, India. Permafrost and Periglacial Processes 19: 341-358. DOI: https://doi.org/10.1002/ppp.631
Wünnemann B, Demske D, Tarasov P, Kotlia BS, Reinhardt C, Bloemendal, Diekmann B, Hartmann K, Krois J, Riedel F & Arya N 2010. Hydrological evolution during the last 15 kyr in the Tso Kar Lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records, Quaternary Science Reviews 29: 1138–1155. DOI: https://doi.org/10.1016/j.quascirev.2010.02.017
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.