Evolutionary Floras ‒ revealing large-scale patterns in Palaeozoic vegetation history

Authors

  • Christopher J. Cleal Department of Natural Sciences, National Museum Wales, Cardiff CF10 3NP, UK
  • Borja Cascales–Miñana CNRS, Univ. Lille, UMR 8198, Evo-Eco-Paleo, F-59000, Lille, France

DOI:

https://doi.org/10.54991/jop.2021.9

Keywords:

Evolutionary floras, Palaeozoic

Abstract

The overarching trajectory of Palaeozoic vegetation history can be interpreted as the sequential replacement of the Eotracheophytic, Eophytic, Palaeophytic and Mesophytic evolutionary floras. Each evolutionary flora was characterised by a group of co-existing supra-generic plant taxa (families and orders) that formed relatively coherent communities in time and space. In most cases, the transition between floras was relatively brief and usually reflected the appearance of evolutionary adaptations (e.g., seeds, robust steles) that favoured the plants of the new flora. The main exception was the diachronous appearance of the Mesophytic Flora during the late Carboniferous and Permian, apparently the result of the invasion by upland or extra-basinal vegetation pre-adapted to the drier substrates that were developing then in the lowlands. The mass extinctions that had such a major effect on Sepkoski’s evolutionary faunas had little effect on the dynamics of the evolutionary floras.

सारांश

पैलियोज़ोइक वनस्पति इतिहास के व्यापक प्रक्षेपवक्र की व्याख्या ईओट्रेकिओफाइटिक, इओफाइटिक, पैलियोफाइटिक और मीसोफाइटिक विकासवादी वनस्पतियों के अनुक्रमिक प्रतिस्थापन के रूप में की जा सकती है। प्रत्येक विकासवादी वनस्पति को सह-मौजूदा  उच्च-वंश वनस्पति वर्गक (फैमिली और ऑर्डर) के एक समूह द्वारा चित्रित किया गया था जो समय और स्थान में अपेक्षाकृत सुसंगत समुदायों का गठन करता था। अधिकतर मामलों में, वनस्पतियों के बीच परिवर्तनकाल अपेक्षाकृत संक्षिप्त था और आमतौर पर विकासवादी अनुकूलन (जैसे, बीज, मजबूत स्टील) की उपस्थिति को दर्शाता है जो नए वनस्पतियों के पौधों का समर्थन करता है। मुख्य अपवाद अंतिम कार्बोनिफेरस और पर्मियन के दौरान  मीसोफाइटिक वनस्पतियों की डायाक्रोनस उपस्थिति थी, जाहिर तौर पर ऊपर की ओर या अतिरिक्त-बेसिनल वनस्पति द्वारा अतिक्रमण का परिणाम सुखाने वाले शुष्क कार्यद्रव्य के लिए अनुकूलित किया गया था जो तब निचले क्षेत्रों में विकसित हो रहे थे। बड़े पैमाने पर विलुप्त होने का सेपकोस्की के विकासवादी जीवों पर बड़ा प्रभाव पड़ा, जबकि विकासवादी वनस्पतियों की गतिशीलता पर बहुत कम प्रभाव पड़ा।

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Algeo TJ, Berner RA, Maynard JB & Scheckler SE 1995. Late Devonian oceanic anoxic events and biotic crises “rooted” in the evolution of vascular land plants. GSA Today 5: 45‒66.

Alroy J 2004. Are Sepkoski’s evolutionary faunas dynamically coherent? Evolutionary Ecology Research 6: 1–32.

Anderson JM, Anderson HM & Cleal CJ 2007. Brief history of the gymnosperms: classification, biodiversity, phytogeography and ecology. South African National Biodiversity Institute, Pretoria (Strelitzia 20): 279 pp.

Arber EAN 1912. A note on some fossil plants from the Kent Coal-field. Geological Magazine 49: 97‒99. DOI: https://doi.org/10.1017/S0016756800113937

Arnold CA 1947. An introduction to paleobotany. McGraw-Hill, New York: 433 pp.

Baars C 2017. Review of plant evolution and its effect on climate during the time of the Old Red Sandstone. Proceedings of the Geologists' Association 128: 431‒437. DOI: https://doi.org/10.1016/j.pgeola.2017.03.003

Banks HP 1964. Evolution and plants of the past. Wadsworth Publishing, Belmont Ca.: 170 pp.

Bateman RM & DiMichele WA 1994. Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biological Reviews 69: 345‒417. DOI: https://doi.org/10.1111/j.1469-185X.1994.tb01276.x

Beerling D 2017. The emerald planet: how plants changed Earth's history. Oxford University Press: 416 pp.

Benton MJ (Editor) 1993. The Fossil Record 2. Chapman & Hall, London: 845 pp.

Berner RA 2003. The rise of trees and their effects on Paleozoic atmospheric CO2 and O2. Comptes Rendus Geosciences 335: 1173–1177. DOI: https://doi.org/10.1016/j.crte.2003.07.008

Berry CM 2019. Palaeobotany: The rise of the Earth’s early forests. Current Biology 29(16): R792‒R794. DOI: https://doi.org/10.1016/j.cub.2019.07.016

Bertrand P 1926. Conférences de paléobotanique. Librairie de l'enseignement technique Léon Eyrolles, Paris: 141 pp.

Bonacorsi NK & Leslie AB 2019. Sporangium position, branching architecture, and the evolution of reproductive morphology in Devonian plants. International Journal of Plant Sciences 180: 493‒503. DOI: https://doi.org/10.1086/702938

Bond DP, Hilton J, Wignall PB, Ali JR, Stevens LG, Sun Y & Lai X 2010. The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Reviews 102: 100‒116. DOI: https://doi.org/10.1016/j.earscirev.2010.07.004

Brayard A, Krumenacker LJ, Botting JP, Jenks JF, Bylund KG, Fara E, Vennin E, Olivier N, Goudemand N, Saucède T & Charbonnier S 2017. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Science Advances 3(2): p.e1602159. DOI: https://doi.org/10.1126/sciadv.1602159

Brongniart A 1828a. Prodrome d'une Histoire des végétaux fossiles. F. G. Levrault, Paris & Strasbourg: 223 pp. DOI: https://doi.org/10.5962/bhl.title.62840

Brongniart A 1828b. Considérations générales sur la nature de la végétation qui couvrait la surface de la terre aux diverses époques déformation de son écorce. Annales des Sciences Naturelles 15: 225‒258.

Brongniart A 1849. Exposition chronologique des périodes des végétation et des flores diverses qui se sont succédé a la surface de la terre. Annales des Sciences Naturelles, 3 Série 11: 285‒338.

Bronn HG 1849. Index palaeontologicus oder übersicht der bis jetzt bekannten fossilen Organismen, Zweite Abtheilung. B. Enumerator palaeontologicus: Systematische Zusammenstelung und geologische Entwicklungs-Gesetze der organischen Reiche. E. Schweizerbart, Stuttgart: 980 pp. DOI: https://doi.org/10.5962/bhl.title.102095

Buckman SS 1902. The Term ‘Hemera.’. Geological Magazine, Decade 4 9: 554‒557. DOI: https://doi.org/10.1017/S001675680018152X

Callomon JH 1995. Time from fossils: S. S. Buckman and Jurassic high-resolution geochronology. Geological Society, London, Memoirs 16: 127‒150. DOI: https://doi.org/10.1144/GSL.MEM.1995.016.01.14

Capel E, Cleal CJ, Gerrienne P, Servais T & Cascales-Miñana B 2020. A factor analysis approach to modelling the early diversification of terrestrial vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology: p.110170. DOI: https://doi.org/10.1016/j.palaeo.2020.110170

Carmichael SK, Waters JA, Koenigshof P, Suttner TJ & Kido E 2019. Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression. Global and Planetary Change 183: p.102984. DOI: https://doi.org/10.1016/j.gloplacha.2019.102984

Cascales-Miñana B 2016. Apparent changes in the Ordovician–Mississippian plant diversity. Review of Palaeobotany and Palynology 227: 19‒27. DOI: https://doi.org/10.1016/j.revpalbo.2015.10.005

Cascales‐Miñana B & Cleal CJ 2014. The plant fossil record reflects just two great extinction events. Terra Nova 26: 195‒200. DOI: https://doi.org/10.1111/ter.12086

Cascales-Miñana B, Cleal CJ & Gerrienne P 2016a. Is Darwin's ‘Abominable Mystery’ still a mystery today? Cretaceous Research 61: 256‒262. DOI: https://doi.org/10.1016/j.cretres.2016.01.002

Cascales-Miñana B, Diez JB, Gerrienne P & Cleal CJ 2016b. A palaeobotanical perspective on the great end-Permian biotic crisis. Historical Biology 28: 1066‒1074. DOI: https://doi.org/10.1080/08912963.2015.1103237

Cascales‐Miñana B, Servais T, Cleal CJ, Gerrienne P & Anderson J 2018. Plants—the great survivors! Geology Today 34: 224‒229. DOI: https://doi.org/10.1111/gto.12250

Cleal CJ 2018. A global review of Permian macrofloral biostratigraphical schemes. In: Lucas SG & Shen SZ (Editors) ‒ The Permian Timescale. Geological Society, London (Special Publication 450): 349‒364. DOI: https://doi.org/10.1144/SP450.4

Cleal CJ 2021a. Paleozoic plants. In: Alderton D & Elias SA (Editors) ‒ Encyclopedia of Geology (2nd edition), Vol.3. Academic Press, United Kingdom: 461‒475. DOI: https://doi.org/10.1016/B978-0-12-409548-9.12050-0

Cleal CJ 2021b. Tiering on land – trees and forests (Late Palaeozoic). In: Encyclopaedia of Life Sciences. J. Wiley, Chichester. DOI: https://doi.org/10.1002/9780470015902.a0029273

Cleal CJ & Cascales‐Miñana B 2014. Composition and dynamics of the great Phanerozoic Evolutionary Floras. Lethaia 47: 469–484. DOI: https://doi.org/10.1111/let.12070

Cleal CJ & Thomas BA 2019. Introduction to plant fossils (2nd edition). Cambridge University Press, Cambridge: 246 pp. DOI: https://doi.org/10.1017/9781108650021

Clements FE 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution, Washington DC (Publication 242): 512 pp. DOI: https://doi.org/10.5962/bhl.title.56234

Collinson ME 1996. ‘What use are fossil ferns?’ 20 years on: with a review of the fossil history of extant pteridophyte families and genera. In: Camus J, Gibby M & Johns RJ (Editors) ‒ Pteridology in Perspective. Royal Botanic Gardens, Kew: 349–394.

Colmenar J & Rasmussen CM 2018. A Gondwanan perspective on the Ordovician radiation constrains its temporal duration and suggests first wave of speciation, fuelled by Cambrian clades. Lethaia 51: 286‒295. DOI: https://doi.org/10.1111/let.12238

Cuvier G 1825. Discours sur les revolutions de la surface de la globe, et sur les changemens qu’elles ont produits dans le règne animal. Dufour et D’Ocagne, Paris: 400 pp. DOI: https://doi.org/10.5962/bhl.title.96253

Decombeix A-L, Boura A & Tomescu AMF 2019. Plant hydraulic architecture through time: lessons and questions on the evolution of vascular systems. IAWA Journal 40: 387–420. DOI: https://doi.org/10.1163/22941932-40190254

DiMichele WA & Phillips TL 2002. The ecology of Paleozoic ferns. Review of Palaeobotany and Palynology 119: 143‒159. DOI: https://doi.org/10.1016/S0034-6667(01)00134-8

DiMichele WA, Kerp H, Tabor NJ & Looy CV 2008. The so-called "Paleophytic-Mesophytic" transition in equatorial Pangea ‒ multiple biomes and vegetational tracking of climate change through geological time. Palaeogeography, Palaeoclimatology, Palaeoecology 268: 152‒163 DOI: https://doi.org/10.1016/j.palaeo.2008.06.006

DiMichele WA, Montañez IP, Poulsen CJ & Tabor NJ 2009. Climate and vegetational regime shifts in the late Paleozoic ice age earth. Geobiology 7: 200‒226. DOI: https://doi.org/10.1111/j.1472-4669.2009.00192.x

Edwards D & Feehan J 1980. Records of Cooksonia-type sporangia from late Wenlock strata in Ireland. Nature 287: 41–42. DOI: https://doi.org/10.1038/287041a0

Edwards D, Wellman CH & Gensel PG 2001. Embryophytes on land: the Ordovician to Lochkovian (Lower Devonian) record. In: Gensel PG & Edwards D (editors) ‒ Plants invade the land: evolutionary and environmental perspectives. Columbia University Press, New York: pp. 3‒28. DOI: https://doi.org/10.7312/gens11160-003

Frederiksen NO 1972. The rise of the mesophytic flora. Geoscience and Man 4: 17‒28. DOI: https://doi.org/10.1080/00721395.1972.9989716

Galtier J & Scott AC 1985. Diversification of early ferns. Proceedings of the Royal Society of Edinburgh, Series B 86: 289‒301. DOI: https://doi.org/10.1017/S0269727000008253

Gerrienne P, Servais T & Vecoli M 2016. Plant evolution and terrestrialization during Palaeozoic times—the phylogenetic context. Review of Palaeobotany and Palynology 227: 4‒18. DOI: https://doi.org/10.1016/j.revpalbo.2016.01.004

Gibling MR & Davies NS 2012. Palaeozoic landscapes shaped by plant evolution. Nature Geosciences 5: 99‒105. DOI: https://doi.org/10.1038/ngeo1376

Gothan W 1912. Paläobotanik. In: Korschelt E, Linck G, Schaum K, Simon HT, Verworn M & Teichmann W (Editors) ‒ Handwörterbuch der Naturwissenschaften. G. Fischer, Jena: 408–460.

Gothan W & Weyland H 1954. Lehrbuch der Paläobotanik. Akademie Verlag, Berlin: 535 pp.

Gray J 1993. Major Paleozoic land plant evolutionary bio-events. Palaeogeography, Palaeoclimatology, Palaeoecology 104: 153‒169. DOI: https://doi.org/10.1016/0031-0182(93)90127-5

Harland WB (Editor) 1967. The Fossil Record: a symposium with documentation. Geological Society, London: 827 pp.

Hammer Ø & Harper D 2006. Paleontological data analysis. Blackwell, Oxford: 351 pp. DOI: https://doi.org/10.1002/9780470750711

Harrison CJ & Morris JL 2018. The origin and early evolution of vascular plant shoots and leaves. Philosophical Transactions of the Royal Society B: Biological Sciences 373: p.20160496. DOI: https://doi.org/10.1098/rstb.2016.0496

Hedberg HD 1954. Procedure and terminology in stratigraphical classification. In: Congrès Géologique International. Comptes rendus de la XIX Session, Alger 1952 (Séction XIII, 1. Partie: Fasc.xiii). Algers: 205‒233.

Hedberg HD 1965. Chronostratigraphy and biostratigraphy. Geological Magazine 102: 451‒461. DOI: https://doi.org/10.1017/S0016756800053723

Hedberg HD 1976. International stratigraphic guide. Wiley & Sons, New York: 200 pp.

Hilton J & Cleal CJ 2007. The relationship between Euramerican and Cathaysian tropical floras in the Late Palaeozoic: palaeobiogeographical and palaeogeographical implications. Earth-Science Reviews 85: 85‒116. DOI: https://doi.org/10.1016/j.earscirev.2007.07.003

Hirmer M 1927. Handbuch der Paläobotanik, Band 1: Thallophyta-Bryophyta-Pteridophyta. R. Oldenbourg, München: 708 pp. DOI: https://doi.org/10.1515/9783486755534

Hochuli PA, Hermann E, Vigran JO, Bucher H & Weissert H 2010. Rapid demise and recovery of plant ecosystems across the end-Permian extinction event. Global and Planetary Change 74, 144–155. DOI: https://doi.org/10.1016/j.gloplacha.2010.10.004

Hochuli PA, Sanson-Barrera A, Schneebeli-Hermann E & Bucher H 2016. Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction. Scientific Reports 6: doi.org/10.1038/srep28372. DOI: https://doi.org/10.1038/srep28372

Hoffman A & Fenster EJ 1986. Randomness and diversification in the Phanerozoic: a simulation. Palaeontology 29: 655–663.

Iannuzzi R & Pfefferkorn HW 2002. A pre-glacial, warm-temperate floral belt in Gondwana (Late Visean, Early Carboniferous). Palaios 17: 571–590. DOI: https://doi.org/10.1669/0883-1351(2002)017<0571:APGWTF>2.0.CO;2

Kenrick P & Crane PR 1997. The origin and early evolution of plants on land. Nature 389: 33–39. DOI: https://doi.org/10.1038/37918

Kerp H 1996. Post-Variscan late Palaeozoic Northern Hemisphere gymnosperms: the onset to the Mesozoic. Review of Palaeobotany and Palynology 90: 263–285. DOI: https://doi.org/10.1016/0034-6667(95)00087-9

Kerp H 2000. The modernization of landscapes during the Late Paleozoic-Early Mesozoic. Paleontological Society Papers 6: 79–114. DOI: https://doi.org/10.1017/S1089332600000723

Kryshtofovich AN 1957. Paleobotanika. State Scientific and Technical Publishing House, Leningrad: 650 pp.

McGhee GR 1996. The Late Devonian Mass Extinction: the Frasnian/Famennian Crisis. Columbia University Press, New York: 303 pp.

McLoughlin S 2011. Glossopteris–insights into the architecture and relationships of an iconic Permian Gondwanan plant. Journal of the Botanical Society of Bengal 65: 93‒106.

Meyen SV 1982. The Carboniferous and Permian floras of Angaraland. Biological Memoirs 7: 1–110.

Meyen SV 1987. Fundamentals of palaeobotany. Chapman and Hall, London & New York: 432 pp. DOI: https://doi.org/10.1007/978-94-009-3151-0

Meyer-Berthaud B, Gerrienne P & Prestianni C 2018. Letters to the twenty-first century botanist. Second series: “what is a seed?”–3. How did we get there? Palaeobotany sheds light on the emergence of seed. Botany Letters 165: 434‒439. DOI: https://doi.org/10.1080/23818107.2018.1505547

Morris JL, Leake JR, Stein WE, Berry CM, Marshall JE, Wellman CH, Milton JA, Hillier S, Mannolini F, Quirk J & Beerling DJ 2015. Investigating Devonian trees as geo‐engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology. Palaeontology 58: 787‒801. DOI: https://doi.org/10.1111/pala.12185

Mosseichik YV 2018. Tomiodendroidnie lepidofiti iz karbona Angaridi. Lethaea rossica 2018(16): 12–22.

Niklas KJ, Tiffney BH & Knoll AH 1983. Patterns in vascular plant diversification. Nature 303: 614‒616. DOI: https://doi.org/10.1038/303614a0

Niklas KJ, Tiffney BH & Knoll AH 1985. Patterns in vascular plant diversification: an analysis at the species level. In: Valentine JW (Editor) ‒ Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press: 97‒128. DOI: https://doi.org/10.1515/9781400855056.97

Opluštil S, Cleal CJ, Wang Jun & Wan Mingli 2021. Carboniferous macrofloral biostratigraphy – an overview. In: Lucas SG, Schneider JW Wang X & Nikolaeva S (Editors) ‒ The Carboniferous timescale. Geological Society, London (Special Publication 512): doi.org/10.1144/SP512-2020-97. DOI: https://doi.org/10.1144/SP512-2020-97

Petersen KB & Burd M 2017. Why did heterospory evolve? Biological Reviews 92: 1739‒1754. DOI: https://doi.org/10.1111/brv.12304

Phillips J 1841. Figures and descriptions of the Palaeozoic fossils of Devon and Cornwall. Longmans, London: 231 pp.

Phillips J 1860. Life on the Earth. Its origins and succession. MacMillan, London: 224 pp. DOI: https://doi.org/10.5962/bhl.title.22153

Potonié H 1897. Lehrbuch der Pflanzenpalaeontologie mit besonderer Rücksicht auf die Bedürfnisse des Geologen (1). F. Dümmler, Berlin: 1‒112.

Potonié H 1899. Lehrbuch der Pflanzenpalaeontologie mit besonderer Rücksicht auf die Bedürfnisse des Geologen (4). F. Dümmler, Berlin: 289‒402.

Potonié H & Gothan W 1921. Lehrbuch der Paläobotanik. Borntraeger, Berlin: 537 pp. DOI: https://doi.org/10.5962/bhl.title.64027

Raup DM 1972. Taxonomic diversity during the Phanerozoic. Science 177: 1065–1071. DOI: https://doi.org/10.1126/science.177.4054.1065

Renault B 1888. Les plantes fossiles. J.-B. Baillière & Fils, Paris: 400 pp.

Rojas A, Calatayud J, Kowalewski M, Neuman M & Rosvall M 2019. Low-latitude origins of the Four Phanerozoic Evolutionary Faunas. bioRxiv 866186: doi.org/10.1101/866186.

Rojas, A., Calatayud, J., Kowalewski, M. Neuman M & Rosvall M 2021. A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions. Nature Communications Biology 4 309: doi.org/10.1038/s42003-021-01805-y. DOI: https://doi.org/10.1038/s42003-021-01805-y

Salamon SA, Gerrienne P, Steemans P, Gorzelak P, Filipiak P, Le Hérissé A, Paris F, Cascales-Miñana B, Brachaniec T, Misz-Kennan M & Niedzwiedzki R 2018. Putative late Ordovician land plants. New Phytologist 218: 1305‒1309. DOI: https://doi.org/10.1111/nph.15091

Saporta G de 1879. Le monde des plantes avant l'apparition de l'homme. G. Masson, Paris: 479 pp.

Saporta G de 1890. Revue des travaux de paléontologie végétale parus en 1888 ou dans le cours des années précédentes. III. Ere néophytique. Revue Générale de Botanique 2: 176‒192.

Schimper WP 1869. Traité de paléontologie végétale, 1. Baillière et fils, Paris: 740 pp.

Sepkoski JJ Jr 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7: 36–53. DOI: https://doi.org/10.1017/S0094837300003778

Sepkoski JJ Jr 1982. A compendium of fossil marine families. Milwaukee Public Museum, Contributions in Biology and Geology 51: 1–125.

Sepkoski JJ Jr 1990. Evolutionary faunas. In: Briggs DEG & Crowther PR (Editors) ‒ Palaeobiology. A Synthesis. Blackwell, Oxford: 37–41.

Sepkoski JJ Jr 1992. A compendium of fossil marine animal families. Milwaukee Public Museum, Contributions in Biology and Geology 83: 1–156.

Servais T, Cascales-Miñana B, Cleal CJ, Gerrienne P, Harper DA & Neumann M 2019. Revisiting the Great Ordovician Diversification of land plants: Recent data and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology 534: p.109280. DOI: https://doi.org/10.1016/j.palaeo.2019.109280

Seward AC 1898. Fossil plants for students of botany and geology. Vol I. The University Press, Cambridge: 452 pp. DOI: https://doi.org/10.5962/bhl.title.54901

Seward AC 1933. Plant life through the ages: a geological and botanical retrospect. Cambridge University Press, Cambridge: 603 pp. DOI: https://doi.org/10.5962/bhl.title.143663

Spiekermann R, Jasper A, Guerra-Sommer M, Ricardi-Branco FS, de Faria RS & Uhl D 2021. Permian lycopsids from Brazil. In: Iannuzzi R, Rößler R, Kunzmann L (Editors) ‒ Brazilian paleofloras. Springer, Cham, doi.org/10.1007/978-3-319-90913-4_15-1. DOI: https://doi.org/10.1007/978-3-319-90913-4_15-1

Sternberg KM von 1823. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt, 1 (3). E. Brenck's Wittwe, Regensburg: 39 pp.

Sternberg KM von 1825. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt, 1 (Tentamen). E. Brenck's Wittwe, Regensburg: i‒xlii.

Stevens LG, Hilton J, Bond DPG, Glasspool IJ & Jardine PE 2011. Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change. Journal of the Geological Society, London 168: 607‒619. DOI: https://doi.org/10.1144/0016-76492010-042

Stigall AL 2017. Ordovician oxygen and biodiversity. Nature Geoscience 10: 887‒888. DOI: https://doi.org/10.1038/s41561-017-0024-1

Strother PK, Wood GD, Taylor WA & Beck JH 2004. Middle Cambrian cryptospores and the origin of land plants. In: Laurie JR & Foster CB (Editors) ‒ Palynological and micropalaeontological studies in honour of Geoffrey Playford. Association of Australasian Palaeontologists, Canberra (Memoir 29): 99–113.

Strullu-Derrien C, Kenrick P, Badel E, Cochard H & Tafforeau P 2013. An overview of the hydraulic systems in early land plants. IAWA Journal 34: 333‒351. DOI: https://doi.org/10.1163/22941932-00000029

Szövényi P, Waller M & Kirbis A 2019. Evolution of the plant body plan. Current Topics in Developmental Biology 131: 1‒34. DOI: https://doi.org/10.1016/bs.ctdb.2018.11.005

Thomas BA & Cleal CJ 2017. Distinguishing Pennsylvanian-age lowland, extra-basinal and upland vegetation. Palaeobiodiversity and Palaeoenvironments 97: 273‒293. DOI: https://doi.org/10.1007/s12549-017-0277-0

Unger F 1845. Synopsis plantarum fossilium. L. Voss, Leipzig: 320 pp.

Unger F 1850. Genera et species plantarum fossilium. W. Braunmüller, Vienna: 627 pp.

Vajda V & McLoughlin S 2007. Extinction and recovery patterns of the vegetation across the Cretaceous–Palaeogene boundary—a tool for unravelling the causes of the end-Permian mass-extinction. Review of Palaeobotany and Palynology 144: 99‒112. DOI: https://doi.org/10.1016/j.revpalbo.2005.09.007

Vakhrameev VA, Dobruskina IA, Meyen SV & Zaklinssskaja ED 1978. Paläozoische und mesozoische Floren Eurasiens und die Phytogeographie dieser Zeit. G. Fischer, Jena: 300 pp.

Walton J 1940. An introduction to the study of fossil plants. A. & C. Black, London: 188 pp.

Wang Jun 2010. Late Paleozoic macrofloral assemblages from Weibei Coalfield, with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block. International Journal of Coal Geology 83: 292–317. DOI: https://doi.org/10.1016/j.coal.2009.10.007

Wang Ziqiang 1996. Past global floristic changes: the Permian Great Eurasian Floral Interchange. Palaeontology 39: 189‒217.

Wieland GR 1925. Triaso-Jurassic plant evolution and climate. The American Naturalist 59: 452‒474. DOI: https://doi.org/10.1086/280058

Wing SL 2004. Mass extinctions in plant evolution. In: Taylor PD (Editor) ‒ Extinctions in the history of life. Cambridge University Press, Cambridge: 61‒97. DOI: https://doi.org/10.1017/CBO9780511607370.004

Zeiller R 1900. Éléments de paléobotanique. Carré & Naud, Paris: 417 pp. DOI: https://doi.org/10.5962/bhl.title.153219

Downloads

Published

2021-09-10

How to Cite

Christopher J. Cleal, & Borja Cascales–Miñana. (2021). Evolutionary Floras ‒ revealing large-scale patterns in Palaeozoic vegetation history. Journal of Palaeosciences, 70((1-2), 31–42. https://doi.org/10.54991/jop.2021.9