Reconsideration of the Ediacaran problematicum Aulozoon

Authors

  • Gregory J. Retallack Department of Earth Sciences, University of Oregon, Eugene, Oregon, 97403–1272, U.S.A.

DOI:

https://doi.org/10.54991/jop.2022.1284

Keywords:

Aulozoon, Phyllozoon, Dickinsonia, Vendobionta, Ediacaran

Abstract

Aulozoon scoliorum is best known from a single large slab from the Nilpena Member of the Rawnsley Quartzite of South Australia, representing an Ediacaran paleocommunity, including Phyllozoon hanseni, Dickinsonia costata, Aspidella terranovica, Pseudorhizostomites howchini, and Somatohelix sinuosus. The source of this slab in Bathtub Gorge is the surface of a thick red sandstone with pseudomorphs of gypsum desert roses, which is interpreted as a Gypsid paleosol of the Muru pedotype. On this “snakes and ladders slab” (nicknamed for snake–like Aulozoon and ladder–like Phyllozoon), four specimens of Dickinsonia are poorly preserved above rounded terminations of Aulozoon. Aulozoon also has been discovered in five other thin sections cut below Dickinsonia basal surfaces, and in one case it is attached to Dickinsonia. Aulozoon has a high width to thickness ratio (14 ± 0.7), even after accounting for burial compaction. Burrows this much wider than high are unknown and would be mechanically difficult for a burrower. Stronger objections to a burrow interpretation come from taper of Aulozoon to half its width and local lateral crimping. Unlike deep sea tube worms, animal or algal stolons, Aulozoon is not cylindrical and lacks a finished inside wall outline. Outer finished wall grading inwards to sandstone fill of Aulozoon scoliorum is most like a fungal rhizomorph with loose internal hyphae, and this biological interpretation is supported by growth within a paleosol with desert roses.

सारांश

औलोज़ून स्कोलियोरम दक्षिण ऑस्ट्रेलिया के रॉन्सले क्वार्टजाइट के नीलपेना सदस्य से एक बड़े स्लैब से भलीभांति जाना जाता है और  एक एडियाकरन पुरासमुदाय का प्रतिनिधित्व करता है, जिसमें फ़िलोज़ून हैंसेनी, डिकिन्सोनिया कोस्टाटा, एस्पिडेला टेरानोविका, स्यूडोरहिज़ोस्टोमाइट्स हाउचिनी और सोमाटोहेलिक्स सिनुओसस शामिल हैं। बाथटब गॉर्ज में इस स्लैब का स्रोत जिप्सम डिज़र्ट रोजेस के स्यूडोमोर्फ्स के साथ एक मोटे लाल बलुआ पत्थर की सतह है, जिसकी मुरु पेडोटाइप के जिप्सिड पेलियोसोल के रूप में व्याख्या की गई है। इस "साँप और सीढ़ी स्लैब" पर (साँप-जैसे औलोज़ून और सीढ़ी-जैसे फ़िलोज़ून के लिए उपनाम), डिकिन्सोनिया के चार नमूने औलोज़ून के गोल सिरे के ऊपर खराब रूप से संरक्षित हैं। औलोज़ून को पाँच अन्य थिन सेक्शन में भी खोजा गया है, डिकिन्सोनिया बेसल सतहों के नीचे, और एक मामले में यह डिकिन्सोनिया से जुड़ा हुआ है। संरक्षण संघनन के लिए लेखांकन के बाद भी औलोज़ून में मोटाई चौड़ाई का अनुपात (14± 0.7) अधिक है। ऊंचाई की तुलना में इतनी चौड़ी बर्रो अज्ञात हैं और  बर्रो बनाने वाले के लिए यंत्रात्मक रूप से कठिन है। औलोज़ून के टेपर से इसकी आधी चौड़ाई और स्थानीय पार्श्व ऐंठन से एक बर्रो की व्याख्या के लिए प्रबल आपत्तियां हैं। गहरे समुद्र ट्यूब वर्म, जन्तु या शैवालीय स्टोलन के विपरीत, औलोज़ून बेलनाकार नहीं है, और आंतरिक भित्ति की पूर्ण रूपरेखा की कमी को दर्शाता है। औलोज़ून स्कोलियोरम के बलुआ पत्थर के अंदर की ओर बाहरी तैयार दीवार की ग्रेडिंग ढीले आंतरिक हायफी के साथ एक कवक राइज़ोमॉर्फ की तरह है, और यह जैविक व्याख्या एक पेलियोसोल के भीतर डिज़र्ट रोजेस के साथ वृद्धि द्वारा समर्थित है।

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Allen MF 2007. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal 6: 291–297. https://doi.org/10.2136/vzj2006.0068. DOI: https://doi.org/10.2136/vzj2006.0068

Ascaso C & Wierzchos J 1995. Study of the biodeterioration zone between the lichen thallus and the substrate. Cryptogamic Botany 5: 270–281. http://hdl.handle.net/10261/32346.

Auxier B, Bazzicalupo A, Betz E, Dee JM, Le Renard L, Roushdy MM, Schwartz C & Berbee M 2016. No place among the living: phylogenetic considerations place the Palaeozoic fossil T. protuberans in fungi but not in Dikarya. A comment on M. Smith (2016). Botanical Journal of the Linnean Society 182: 723–728. https://doi.org/10.1111/boj.12479 DOI: https://doi.org/10.1111/boj.12479

Blackstone NW & Buss LW 1991. Shape variation in hydractiniid hydroids. The Biological Bulletin 180: 394–405. https://doi.org/10.2307/1542340 DOI: https://doi.org/10.2307/1542340

Bobrovskiy I, Hope JM, Ivantsov A, Nettersheim BJ, Hallmann C & Brocks JJ 2018. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science 361: 1246–1249. https://doi.org/10.1126/science.aat7 DOI: https://doi.org/10.1126/science.aat7228

Bonner JT 2009. The Social Amoebae. Princeton University Press, Princeton, 152 p.

Bright M & Lallier FH 2010. The biology of vestimentiferan tubeworms. Oceanography and Marine Biology 48: 213–266. https://doi.org/10.1201/EBK1439821169 DOI: https://doi.org/10.1201/EBK1439821169-4

Buatois LA & Mángano MG 2016. Ediacaran ecosystems and the dawn of animals. In: Mángano MG & Buatois LA (Editors)–The trace–fossil record of major evolutionary events. Springer, Dordrecht, v.1, pp. 27–72. https://link.springer.com/chapter/10.1007/978–94–017–9600–2_2 DOI: https://doi.org/10.1007/978-94-017-9600-2_2

Chardon–Loriaux I, Morisaki M & Ikekawa N 1976. Sterol profiles of red algae. Phytochemistry 15: 723−725. https://doi.org/10.1016/S0031–9422(00)94429–7 DOI: https://doi.org/10.1016/S0031-9422(00)94429-7

Chen Z, Zhou C, Meyer M, Xiang K, Schiffbauer JD, Yuan X & Xiao S 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research 224: 690–701. https://doi.org/10.1016/j.precamres.2012.11.004 DOI: https://doi.org/10.1016/j.precamres.2012.11.004

Crowther TW, Stanton DW, Thomas SM, A'Bear AD, Hiscox J, Jones TH, Voříšková J, Baldrian P & Boddy L 2013. Top-down control of soil fungal community composition by a globally distributed keystone consumer. Ecology 94: 2518–2528. https://doi.org/10.1890/13–0197.1 DOI: https://doi.org/10.1890/13-0197.1

Darroch SA, Laflamme M & Wagner PJ 2018. High ecological complexity in benthic Ediacaran communities. Nature Ecology and Evolution 2: 1541. https://doi.org/10.1038/s41559–018–0663–7 DOI: https://doi.org/10.1038/s41559-018-0663-7

Dietrich M & Scheidegger C 1997. Frequency, diversity and ecological strategies of epiphytic lichens in the Swiss Central Plateau and the Pre–Alps. The Lichenologist 29: 237−258. https://doi.org/10.1006/lich.1996.0074 DOI: https://doi.org/10.1006/lich.1996.0074

Dowson CG, Rayner AD & Boddy L 1986. Outgrowth patterns of mycelial cord–forming basidiomycetes from and between woody resource units in soil. Microbiology 132: 203–211. https://doi.org/10.1099/00221287–132–1–203 DOI: https://doi.org/10.1099/00221287-132-1-203

Droser ML & Gehling JG 2008. Synchronous aggregate growth in an abundant new Ediacaran tubular organism. Science 319: 1660–1662. https://doi.org/10.1126/science.11525 DOI: https://doi.org/10.1126/science.1152595

Droser ML, Gehling JG, Tarhan LG, Evans SD, Hall CM, Hughes IV, Hughes EB, Dzaugis ME, Dzaugis MP, Dzaugis PW & Rice D 2019. Piecing together the puzzle of the Ediacara Biota: excavation and reconstruction at the Ediacara National Heritage site Nilpena (South Australia). Palaeogeography Palaeoclimatology Palaeoecology 513: 132–145. https://doi.org/10.1016/j.palaeo.2017.09.007 DOI: https://doi.org/10.1016/j.palaeo.2017.09.007

El Albani A, Mangano MG, Buatois LA, Bengtson S, Riboulleau A, Bekker A, Konhauser K, Lyons T, Rollion–Bard C, Bankole O & Baghekema SGL 2019. Organism motility in an oxygenated shallow–marine environment 2.1 billion years ago. Proceedings of the U.S. National Academy of Sciences 116: 3431–3436. https://doi.org/10.1073/pnas.181572111 DOI: https://doi.org/10.1073/pnas.1815721116

Evans SD, Gehling JG & Droser ML 2019a. Slime travelers: Early evidence of animal mobility and feeding in an organic mat world. Geobiology 17: 490–509. https://doi.org/10.1111/gbi.12351 DOI: https://doi.org/10.1111/gbi.12351

Evans SD, Huang W, Gehling JG, Kisailus D & Droser ML 2019b. Stretched, mangled, and torn: Responses of the Ediacaran fossil Dickinsonia to variable forces. Geology 47: 1049−1053. DOI: https://doi.org/10.1130/G46574.1

Evans SD, Hughes IV, Gehling JG & Droser ML 2020. Discovery of the oldest bilaterian fossil from the Ediacaran of South Australia. U.S. National Academy of Sciences Proceedings 117(14): 7845–7850. https://doi.org/10.1130/G46574.1 DOI: https://doi.org/10.1073/pnas.2001045117

Fernandez–Going BM, Harrison SP, Anacker BL & Safford HD 2013. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology 94: 2007−2018. https://doi.org/10.1890/12–2011.1 DOI: https://doi.org/10.1890/12-2011.1

Finnegan S, Gehling JG & Droser ML 2019. Unusually variable paleocommunity composition in the oldest metazoan fossil assemblages. Paleobiology 45: 1–11. https://doi.org/10.1017/pab.2019.1 DOI: https://doi.org/10.1017/pab.2019.1

Ford TD 1958. Pre–Cambrian fossils from Charnwood Forest. Proceedings of the Yorkshire Geological Society 31: 211–217. https://doi.org/10.1144/pygs.31.3.211 DOI: https://doi.org/10.1144/pygs.31.3.211

Gehling JG 1999. Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks. Palaios 14: 40−57. https://doi.org/10.2307/3515360 DOI: https://doi.org/10.2307/3515360

Gehling JG 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research 100: 65–95. https://doi.org/10.1016/S0301–9268(99)00069–8 DOI: https://doi.org/10.1016/S0301-9268(99)00069-8

Gehling JG & Droser ML 2012. Ediacaran stratigraphy and the biota of the Adelaide Geosyncline, South Australia. Episodes 35: 236–246. https://doi.org/10.18814/epiiugs/2012/v35i1/023 DOI: https://doi.org/10.18814/epiiugs/2012/v35i1/023

Gehling JG & Droser ML 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology 41: 447–450. https://doi.org/10.1130/G33881.1 DOI: https://doi.org/10.1130/G33881.1

Gehling JG & Droser ML 2018. Ediacaran scavenging as a prelude to predation. Emerging Topics Life Sciences 2: 213–222. https://doi.org/10.1042/ETLS20170166 DOI: https://doi.org/10.1042/ETLS20170166

Gehling JG, Droser ML, Jensen SR & Runnegar BN 2005. Ediacara organisms: relating form to function. In: Briggs DEG (Editor)–Evolving form and function: Fossils and development. Peabody Museum of Natural History, Yale University, New Haven, pp. 43–66.

Gehling JG & Runnegar BN 2022. Phyllozoon and Aulozoon—key components of a novel Ediacaran death assemblage in Bathtub Gorge, Heysen Range, South Australia. Geological Magazine 159: 1134–1147. https://doi.org/10.1017/S0016756821000509. DOI: https://doi.org/10.1017/S0016756821000509

Glaessner MF 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia 2: 369–393. https://doi.org/10.1111/j.1502–3931.1969.tb01258.x DOI: https://doi.org/10.1111/j.1502-3931.1969.tb01258.x

Glaessner MF & Wade M 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9: 599–628.

Gold DA 2018. The slow rise of complex life as revealed through biomarker genetics. Emerging Topics Life Sciences 2: 191–199. https://doi.org/10.1042/ETLS20170150 DOI: https://doi.org/10.1042/ETLS20170150

Grandmougin–Ferjani A, Dalpé Y, Hartmann MA, Laruelle F & Sancholle M 1999. Sterol distribution in arbuscular mycorrhizal fungi. Phytochemistry 50: 1027–1031. https://doi.org/10.1016/S0031–9422(98)00636–0 DOI: https://doi.org/10.1016/S0031-9422(98)00636-0

Grazhdankin D & Seilacher A 2002. Underground Vendobionta from Namibia. Palaeontology 45: 57−78. https://doi.org/10.1111/1475–4983.00227 DOI: https://doi.org/10.1111/1475-4983.00227

Hall CM, Droser ML, Gehling JG & Dzaugis ME 2015. Paleoecology of the enigmatic Tribrachidium: New data from the Ediacaran of South Australia. Precambrian Research 269: 183–194. https://doi.org/10.1016/j.precamres.2015.08.009 DOI: https://doi.org/10.1016/j.precamres.2015.08.009

Harrington HJ & Moore RC 1956. Dipleurozoa. In: Moore RC (Editor)–Treatise on Invertebrate Paleontology. Part F. Coelenterata. Geological Society of America and University of Kansas Press, Boulder and Lawrence, pp. F24–F26.

Hayee–Memon A & Shameel M 1996. A taxonomic study of some red algae commonly growing on the coast of Karachi. Pakistan. Journal of Marine Sciences 5: 113–136. http://hdl.handle.net/1834/33163

Hotaling S, Bartholomaus TC & Gilbert SL 2020. Rolling stones gather moss: Movement and longevity of moss balls on an Alaskan Glacier. Polar Biology 43: 735–744. https://doi.org/10.1007/s00300–020–02675–6 DOI: https://doi.org/10.1007/s00300-020-02675-6

Ivantsov AY 2013. Trace fossils of Precambrian metazoans “Vendobionta” and “Mollusks”. Stratigraphy Geological Correlation 21: 252–264. https://doi.org/10.1134/S0869593813030039 DOI: https://doi.org/10.1134/S0869593813030039

Ivantsov AY & Malakhovskaya YE 2002. Giant traces of Vendian animals. Doklady Earth Sciences Akademia Nauk S.S.R. 385: 618–622.

Ivantsov A, Nagovitsyn A & Zakrevskaya M 2019. Traces of locomotion of Ediacaran macroorganisms. Geosciences 9(9): 395. https://doi.org/10.3390/geosciences9090395 DOI: https://doi.org/10.3390/geosciences9090395

Jago JB, Gehling JG, Paterson JR & Brock GA 2012 Comments on Retallack GJ 2011: problematic megafossils in Cambrian palaeosols of South Australia. Palaeontology 55: 913–917. https://doi.org/10.1111/j.1475–4983.2012.01173.x DOI: https://doi.org/10.1111/j.1475-4983.2012.01173.x

Jenkins RJF 1995. The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Research 73: 51–69. https://doi.org/10.1016/0301–9268(94)00071–x DOI: https://doi.org/10.1016/0301-9268(94)00071-X

Jenkins RJF, Ford CH & Gehling JG 1983. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara Assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia 30: 101–119. https://doi.org/10.1080/00167618308729240 DOI: https://doi.org/10.1080/00167618308729240

Jenkins RJF & Gehling JG 1978. A review of the frond–like fossils of the Ediacara Assemblage. South Australian Museum Records 17: 347–359.

Joel LV, Droser ML & Gehling JG 2014. A new enigmatic, tubular organism from the Ediacara Member, Rawnsley Quartzite, South Australia. Journal of Paleontology 88: 253–262. https://doi.org/10.1666/13–058 DOI: https://doi.org/10.1666/13-058

Jones ML 1981. Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science 213: 333−336. https://doi.org/10.1126/science.213.4505.3 DOI: https://doi.org/10.1126/science.213.4505.333

Kaneshiro ES & Wyder MA 2000. C27 to C32 sterols found in Pneumocystis, an opportunistic pathogen of immunocompromised mammals. Lipids 35: 317–324. https://doi.org/10.1007/s11745–000–0528–8 DOI: https://doi.org/10.1007/s11745-000-0528-8

Kessler M, Abrahamczyk S, Bos M, Buchori D, Putra DD, Gradstein SR, Höhn P, Kluge J, Orend F, Pitopang R & Saleh S 2009. Alpha and beta diversity of plants and animals along a tropical land–use gradient. Ecological Applications 19: 2142−2156. https://doi.org/10.1890/08–1074.1 DOI: https://doi.org/10.1890/08-1074.1

Komatsu T, Meinesz A & Buckles D 1997. Temperature and light responses of alga Caulerpa taxifolia introduced into the Mediterranean Sea. Marine Ecology Progress Series 146: 145–153. https://doi.org/10.3354/meps146145 DOI: https://doi.org/10.3354/meps146145

Kuusinen M 1994. Epiphytic lichen diversity on Salix caprea in old–growth southern and middle boreal forests of Finland. Annales Botanici Fennici 31: 77–92. https://libproxy.uoregon.edu/login?url=https: //www.jstor.org/stable/43922194

Lamour A, Termorshuizen AJ, Volker D & Jeger MJ 2007. Network formation by rhizomorphs of Armillaria lutea in natural soil: their description and ecological significance. FEMS Microbiology Ecology 62(2): 222–232. https://doi.org/10.1111/j.1574–6941.2007.00358.x DOI: https://doi.org/10.1111/j.1574-6941.2007.00358.x

Liang MM, Qian ZG, Wang XY, Chen HM, Liu D & Wang LS 2012. Contributions to the lichen flora of the Hengduan Mountains, China (5). Anzia rhabdorhiza (Parmeliaceae), a new species. Bryologist 115: 382–387. https://doi.org/10.1639/0007–2745–115.3.382 DOI: https://doi.org/10.1639/0007-2745-115.3.382

Liu AG & Dunn FS 2020. Filamentous connections between Ediacaran fronds. Current Biology 30: 1–7. https://doi.org/10.1016/j.cub.2020.01.052 DOI: https://doi.org/10.1016/j.cub.2020.01.052

Matthew C, Quilter SJ, Korte CJ, Chu ACP & Mackay AD 1989. Stolon Formation and significance for sward tiller dynamics in perennial ryegrass. Proceedings of the New Zealand Grassland Association 50: 255–259. https://doi.org/10.33584/jnzg.1989.50.1862 DOI: https://doi.org/10.33584/jnzg.1989.50.1862

McMahon WJ, Liu AG, Tindal BH & Kleinhans MG 2020. Ediacaran life close to land: Coastal and shoreface habitats of the Ediacaran macrobiota, the Central Flinders Ranges, South Australia. Journal of Sedimentary Research 90: 1463−1499. https://doi.org/10.2110/jsr.2020.029 DOI: https://doi.org/10.2110/jsr.2020.029

Meyer M, Xiao S, Gill BC, Schiffbauer JD, Chen Z, Zhou C & Yuan X 2014. Interactions between Ediacaran animals and microbial mats: insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeography Palaeoclimatology Palaeoecology 396: 62–74. https://doi.org/10.1016/j.palaeo.2013.12.026 DOI: https://doi.org/10.1016/j.palaeo.2013.12.026

Mihail JD & Bruhn JN 2005. Foraging behavior of Armillaria rhizomorph systems. Mycological Research 109: 1195–1207. https://doi.org/10.1017/S0953756205003606 DOI: https://doi.org/10.1017/S0953756205003606

Mitchell EG, Bobkov N, Bykova N, Dhungana A, Kolesnikov AV, Hogarth IR, Liu AG, Mustill TM, Sozonov N, Rogov VI & Xiao S 2020. The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus 10(4): 20190109. https://doi.org/10.1098/rsfs.2019.0109 DOI: https://doi.org/10.1098/rsfs.2019.0109

Mitchell EG & Butterfield NJ 2018. Spatial analyses of Ediacaran communities at Mistaken Point. Paleobiology 44: 40–57. https://doi.org/10.1017/pab.2017.35 DOI: https://doi.org/10.1017/pab.2017.35

Motta JJ 1969. Cytology and morphogenesis in the rhizomorph of Armillaria mellea. American Journal of Botany 56: 610−619. https://doi.org/10.1002/j.1537–2197.1969.tb07577.x DOI: https://doi.org/10.1002/j.1537-2197.1969.tb07577.x

Noffke N, Hagadorn J & Bartlett S 2019. Microbial structures and dinosaur trackways from a Cretaceous coastal environment (Dakota Group, Colorado, USA). Journal of Sedimentary Research 89: 1096–1108. https://doi.org/10.2110/jsr.2019.57 DOI: https://doi.org/10.2110/jsr.2019.57

Olsson O, Olsson PA & Hammer EC 2014. Phosphorus and carbon availability regulate structural composition and complexity of AM fungal mycelium. Mycorrhiza 24: 443–451. https://doi.org/10.1007/s00572–014–0557–8 DOI: https://doi.org/10.1007/s00572-014-0557-8

Ott S, Mechmann A & Jahns HM 1993. Rhizine–Strands in Cladonia sulphurina (Michaux) Fr. Symbiosis 15: 151–164.

Overton J 1963. Intercellular connections in the outgrowing stolon of Cordylophora. The Journal of Cell Biology 17: 661–671. https://doi.org/10.1083/jcb.17.3.661 DOI: https://doi.org/10.1083/jcb.17.3.661

Paradise TR 1997. Disparate sandstone weathering beneath lichens, Red Mountain, Arizona. Geografiska Annaler, Series A, Physical Geography 79: 177–184. https://doi.org/10.1111/j.0435–3676.1997.00014.x DOI: https://doi.org/10.1111/j.0435-3676.1997.00014.x

Pemberton SG & Frey RW 1982. Trace fossil nomenclature and the Planolites–Palaeophycus dilemma. Journal of Paleontology 56: 843–881. https://www.jstor.org/stable/1304706

Pérez FL 1994. Vagrant cryptogams in a paramo of the high Venezuelan Andes. Flora 189: 263−276. https://doi.org/10.1016/S0367–2530(17)30601–1 DOI: https://doi.org/10.1016/S0367-2530(17)30601-1

Pérez FL 2020 Andean rolling mosses gather on stone pavements: Geoecology of Grimmia longirostris Hook. in a high periglacial páramo. Catena 187: 104389. https://doi.org/10.1016/j.catena.2019.104389 DOI: https://doi.org/10.1016/j.catena.2019.104389

Prave AR 2002. Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology 30: 811–814. https://doi.org/10.1130/0091–7613(2002)030<0811: LOLITP>2.0.CO;2 DOI: https://doi.org/10.1130/0091-7613(2002)030<0811:LOLITP>2.0.CO;2

Reid LM, Holmes JD, Payne JL, García–Bellido DC & Jago JB 2018. Taxa, turnover and taphofacies: a preliminary analysis of facies–assemblage relationships in the Ediacara Member (Flinders Ranges, South Australia). Australian Journal of Earth Sciences 67: 1488767. https://doi.org/10.1080/08120099.2018.1488767 DOI: https://doi.org/10.1080/08120099.2018.1488767

Retallack GJ 1994. Were the Ediacaran fossils lichens? Paleobiology 20: 523–544. https://doi.org/10.1017/S0094837300012975 DOI: https://doi.org/10.1017/S0094837300012975

Retallack GJ 2007. Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa 31: 215–240. https://doi.org/10.1080/03115510701484705 DOI: https://doi.org/10.1080/03115510701484705

Retallack GJ 2011. Problematic megafossils in Cambrian palaeosols of South Australia. Palaeontology 54: 1223–1242. https://doi.org/10.1111/j.1475–4983.2011.01099.x DOI: https://doi.org/10.1111/j.1475-4983.2011.01099.x

Retallack GJ 2012a. Were Ediacaran siliciclastics of South Australia coastal or deep marine? Sedimentology 59: 1208–1236. https://doi.org/10.1111/j.1365–3091.2011.01302.x DOI: https://doi.org/10.1111/j.1365-3091.2011.01302.x

Retallack GJ 2012b. Reply to comments on Retallack 2011: problematic megafossils in Cambrian palaeosols of South Australia. Palaeontology 55: 919–921. https://doi.org/10.1111/j.1475–4983.2012.01172.x DOI: https://doi.org/10.1111/j.1475-4983.2012.01172.x

Retallack GJ 2013a. Ediacaran life on land. Nature 493: 89–92. https://doi.org/10.1038/nature11777 DOI: https://doi.org/10.1038/nature11777

Retallack GJ 2013b. Comment on “Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors” by Chen et al. [Precambrian Research 224 (2013) 690–701]. Precambrian Research 231: 383–385. https://doi.org/10.1016/j.precamres.2013.04.005 DOI: https://doi.org/10.1016/j.precamres.2013.04.005

Retallack GJ 2014. Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland. Geological Society of America Bulletin 126: 619–638. https://doi.org/10.1130/B30892.1 DOI: https://doi.org/10.1130/B30892.1

Retallack GJ 2016a. Field and laboratory tests for recognition of Ediacaran paleosols. Gondwana Research 36: 94–110. https://doi.org/10.1016/j.gr.2016.05.001 DOI: https://doi.org/10.1016/j.gr.2016.05.001

Retallack GJ 2016b. Ediacaran fossils in thin–section. Alcheringa 40: 583–600. https://doi.org/10.1080/03115518.2016.1159412 DOI: https://doi.org/10.1080/03115518.2016.1159412

Retallack GJ 2017. Exceptional preservation of soft–bodied Ediacara Biota promoted by silica–rich oceans: comment. Geology 44: 407. https://doi.org/10.1130/G38763C. DOI: https://doi.org/10.1130/G38763C.1

Retallack GJ 2019. Interflag sandstone laminae, a novel fluvial sedimentary structure with implication for Ediacaran paleoenvironments. Sedimentary Geology 379: 60–76. https://doi.org/10.1016/j.sedgeo.2018.11.003 DOI: https://doi.org/10.1016/j.sedgeo.2018.11.003

Retallack GJ 2020. Boron paleosalinity proxy for deeply buried Paleozoic and Ediacaran fossils. Palaeogeography Palaeoclimatology Palaeoecology 540: 109536. https://doi.org/10.1016/j.palaeo.2019.109536 DOI: https://doi.org/10.1016/j.palaeo.2019.109536

Retallack GJ 2021. Ediacaran periglacial sedimentary structures. Journal of Palaeosciences 70: 5−30. https://www.jpsonline.co.in/index.php/jop/article/view/8 DOI: https://doi.org/10.54991/jop.2021.8

Retallack GJ 2022a. Ordovician–Devonian lichen canopy before evolution of woody trees. Gondwana Research 106: 211−223. https://doi.org/10.1016/j.gr.2022.01.010 DOI: https://doi.org/10.1016/j.gr.2022.01.010

Retallack GJ 2022b. Repaired Dickinsonia specimens as clues to Ediacaran vendobiont biology. PLOS One 17(6): 0269638. https://doi.org/10.1371/journal.pone.0269638 DOI: https://doi.org/10.1371/journal.pone.0269638

Retallack GJ & Broz AP 2020. Arumberia and other Ediacaran–Cambrian fossils of central Australia. Historical Biology 33: 1964–1988. https://doi.org/10.1080/08912963.2020.1755281 DOI: https://doi.org/10.1080/08912963.2020.1755281

Retallack GJ, Gose BN & Osterhout JT 2015. Periglacial paleosols and Cryogenian paleoclimate near Adelaide, South Australia. Precambrian Research 263: 1−18. https://doi.org/10.1016/j.precamres.2015.03.002 DOI: https://doi.org/10.1016/j.precamres.2015.03.002

Retallack GJ & Mao X 2019. Paleoproterozoic (ca. 1.9 Ga) megascopic life on land in Western Australia. Palaeogeography Palaeoclimatology Palaeoecology 532: 109266. https://doi.org/10.1016/j.palaeo.2019.109266 DOI: https://doi.org/10.1016/j.palaeo.2019.109266

Retallack GJ, Marconato A, Osterhout JT, Watts KE & Bindeman IN 2014. Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. Journal of the Geological Society of London 171: 709–722. https://doi.org/10.1144/jgs2014–016 DOI: https://doi.org/10.1144/jgs2014-016

Runnegar B 1982. Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit. Alcheringa 6: 223–239. https://doi.org/10.1080/03115518208565415 DOI: https://doi.org/10.1080/03115518208565415

Runnegar B 1994. Proterozoic eukaryotes: evidence from biology and geology. In: Bengtson S (Editor)–Early Life on earth. Columbia University Press, New York, pp. 287–297. https://cir.nii.ac.jp/crid/1574231874557659392

Runnegar B 2022. Following the logic behind biological interpretations of the Ediacaran biotas. Geological Magazine 159: 1093−1117, https://doi.org/10.1017/S0016756821000443 DOI: https://doi.org/10.1017/S0016756821000443

Sanders WB & Ascaso C 1997. Fine structural features of rhizomorphs (sensu lato) produced by four species of lichen fungi. Mycological Research 101: 319–328. https://doi.org/10.1017/S095375629600278X DOI: https://doi.org/10.1017/S095375629600278X

Sappenfield A, Droser ML & Gehling JG 2011. Problematica, trace fossils, and tubes within the Ediacara Member (South Australia): Redefining the Ediacaran trace fossil record one tube at a time. Journal of Paleontology 85: 256–265. https://doi.org/10.1666/10–068.1 DOI: https://doi.org/10.1666/10-068.1

Seilacher A 2007a. Trace fossil analysis. Springer, Berlin, 238 p.

Seilacher A 2007b. Evolutionary innovation versus ecological incumbency. In: Pudritz RE, Higgs PG & Stone JR (Editors)–Planetary Systems and the Origins of Life. Cambridge University Press, New York, pp. 193–209. DOI: https://doi.org/10.1017/CBO9780511536120.011

Seilacher A, Buatois LA & Mangano MG 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography Palaeoclimatology Palaeoecology 227: 323–356. https://doi.org/10.1016/j.palaeo.2005.06.003 DOI: https://doi.org/10.1016/j.palaeo.2005.06.003

Seilacher A & Gishlick AD 2014. Morphodynamics. CRC Press, Boca Raton, 551 p. DOI: https://doi.org/10.1201/b17557

Seilacher A, Grazhdankin D & Legouta A 2003. Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontological Research Tokyo 7: 43–54. https://doi.org/10.2517/prpsj.7.43 DOI: https://doi.org/10.2517/prpsj.7.43

Sheldon ND & Retallack GJ 2001. Equation for compaction of paleosols due to burial. Geology 29: 247–250. https://doi.org/10.1130/0091–7613(2001)029<0247: EFCOPD>2.0.CO;2 DOI: https://doi.org/10.1130/0091-7613(2001)029<0247:EFCOPD>2.0.CO;2

Simard SW 2018. Mycorrhizal networks facilitate tree communication, learning, and memory. In: Baluska F, Gagliano M & Witzany G (Editors)–Memory and Learning in Plants, Signaling and Communication in Plants. Springer, Berlin, pp. 191–213. https://link.springer.com/chapter/10.1007/978–3–319–75596–0_10 DOI: https://doi.org/10.1007/978-3-319-75596-0_10

Smith MR 2016. Cord–forming Palaeozoic fungi in terrestrial assemblages. Botanical Journal of the Linnean Society 180: 452–460. https://doi.org/10.1111/boj.12389 DOI: https://doi.org/10.1111/boj.12389

Soil Survey Staff 2014. Keys to Soil Taxonomy. Natural Resources Conservation Service, Washington DC, 358 p.

Sperling EA & Vinther J 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution and Development 12: 201–209. https://doi.org/10.1111/j.1525–142X.2010.00404.x DOI: https://doi.org/10.1111/j.1525-142X.2010.00404.x

Sprigg RC 1949. Early Cambrian ‘jellyfishes’ of Ediacara, South Australia, and Mount John, Kimberley District, Western Australia. Royal Society of South Australia Transactions 73: 72–99.

Stimson MR, Miller RF, MacRae RA & Hinds SJ 2017. An ichnotaxonomic approach to wrinkled microbially induced sedimentary structures. Ichnos 24: 291–316. https://doi.org/10.1080/10420940.2017.1294590 DOI: https://doi.org/10.1080/10420940.2017.1294590

Strother PK 2016. Systematics and evolutionary significance of some new cryptospores from the Cambrian of eastern Tennessee, USA. Review of Palaeobotany and Palynology 227: 28–41. https://doi.org/10.1016/j.revpalbo.2015.10.006 DOI: https://doi.org/10.1016/j.revpalbo.2015.10.006

Tarhan LG, Droser ML & Gehling JG 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. Palaios 25: 823–830. https://doi.org/10.2110/palo.2010.p10–074r DOI: https://doi.org/10.2110/palo.2010.p10-074r

Tarhan LG, Droser ML, Gehling JG & Dzaugis MP 2015. Taphonomy and morphology of the Ediacara form genus Aspidella. Precambrian Research 257: 124–136. https://doi.org/10.1016/j.precamres.2014.11.026 DOI: https://doi.org/10.1016/j.precamres.2014.11.026

Tarhan LG, Hood AV, Droser ML, Gehling JG & Briggs DE 2016. Exceptional preservation of soft–bodied Ediacara Biota promoted by silica–rich oceans. Geology 44: 951–954. https://doi.org/10.1130/G38542.1 DOI: https://doi.org/10.1130/G38542.1

Thor G, Johansson P & Jönsson MT 2010. Lichen diversity and red–listed lichen species relationships with tree species and diameter in wooded meadows. Biodiversity and Conservation 19: 2307−2328. https://doi.org/10.1007/s10531–010–9843–8 DOI: https://doi.org/10.1007/s10531-010-9843-8

Ulrich W, Soliveres S, Thomas AD, Dougill AJ & Maestre FT 2016. Environmental correlates of species rank− abundance distributions in global drylands. Perspectives in Plant Ecology Evolution and Systematics 20: 56−64. https://doi.org/10.1016/j.ppees.2016.04.004 DOI: https://doi.org/10.1016/j.ppees.2016.04.004

Wade M 1968. Preservation of soft-bodied animals in Precambrian sandstones at Ediacara, South Australia. Lethaia 1: 238–267. https://doi.org/10.1111/j.1502–3931.1968.tb01740.x DOI: https://doi.org/10.1111/j.1502-3931.1968.tb01740.x

Walter MR, Krylov IN & Preiss WV 1979. Stromatolites from Adelaidean (Late Proterozoic) sequences in central and South Australia. Alcheringa 3: 287–305. https://doi.org/10.1080/03115517908527799 DOI: https://doi.org/10.1080/03115517908527799

Warren JK 2016. Evaporites: A Geological Compendium. Springer, Berlin, 1813 p. DOI: https://doi.org/10.1007/978-3-319-13512-0

Waters EM & Watson MA 2015. Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca. Frontiers in Plant Science 6: 00814. https://doi.org/10.3389/fpls.2015.00814 DOI: https://doi.org/10.3389/fpls.2015.00814

Weete JD, Abril M & Blackwell M 2010. Phylogenetic distribution of fungal sterols. PloS one 5(5): 10899. https://doi.org/10.1371/journal.pone.0010899 DOI: https://doi.org/10.1371/journal.pone.0010899

Weete JD, Fuller MS, Huang MQ & Gandhi S 1989. Fatty acids and sterols of selected Hyphochytriomycetes. Experimental Mycology 13: 183–195. https://doi.org/10.1016/0147–5975(89)90023–6 DOI: https://doi.org/10.1016/0147-5975(89)90023-6

Weete JD & Gandhi SR 1997. Sterols of the phylum Zygomycota: phylogenetic implications. Lipids 32: 1309–1316. https://doi.org/10.1007/s11745–006–0169–y DOI: https://doi.org/10.1007/s11745-006-0169-y

Yafetto L 2018. The structure of mycelial cords and rhizomorphs of fungi: A mini–review. Mycosphere 9: 984–998. https://doi.org/10.5943/mycosphere/9/5/3 DOI: https://doi.org/10.5943/mycosphere/9/5/3

Downloads

Published

2022-12-30

How to Cite

Retallack, G. J. (2022). Reconsideration of the Ediacaran problematicum Aulozoon. Journal of Palaeosciences, 71(2), 143–157. https://doi.org/10.54991/jop.2022.1284

Issue

Section

Research Articles