Early Ediacaran lichen from Death Valley, California, USA
DOI:
https://doi.org/10.54991/jop.2022.1841Keywords:
Lichen, Nabhka, Loess, Cap carbonate, Ediacaran, CaliforniaAbstract
Enigmatic tubestones from the basal Ediacaran Noonday Formation of southern California have been interpreted as fluid escape structures or as stromatolites in a “cap carbonate”, created by marine precipitation at the termination of Snowball Earth glaciation. However, doubts about this interpretation stem from permineralized organic structures within the tubes with hyphae and attached spheroidal cells, and thallus organization comparable with lichens. These “tubestones” are here named Ganarake scalaris gen. et sp. nov. The fungus was aseptate as in Mucoromycota and Glomeromycota, and the spheroidal photobiont has the size and isotopic composition of a chlorophyte alga. The tubes are most like modern window lichens (shallow subterranean lichens) and formed nabkhas (vegetation–stabilized dunes) of a loess plateau comparable in thickness and extent with the Chinese Loess Plateau of Gansu. Loess paleosols of three different kinds are recognized in the Noonday Formation from geochemical, petrographic, and granulometric data. The Noonday Formation was not a uniquely Neoproterozoic marine whiting event, but calcareous loess like the Peoria Loess of Illinois and the Chinese Loess Plateau of Gansu.
सारांश
दक्षिणी कैलिफोर्निया के निचले एडियाकरन नूनडे शैलसमूह से अज्ञात ट्यूबस्टोन की एक "कैप कार्बोनेट" में द्रव पलायन संरचनाओं या स्ट्रोमेटोलाइट्स के रूप में व्याख्या की गई है जो कि स्नोबॉल अर्थ हिमाच्छादन की समाप्ति पर समुद्री वर्षा द्वारा निर्मित हुए। हालांकि, इस व्याख्या के बारे में संदेह, हायफी और संलग्न गोलाकार कोशिकाओं के साथ ट्यूबों के भीतर अश्मीकृत कार्बनिक संरचनाओं से उपजा है और थैलस संगठन लाइकेन के साथ तुलनीय है। इन "ट्यूबस्टोन" को यहाँ गनारके स्केलेरिस नव कुल नव प्रजाति नाम दिया गया है। कवक म्योकोरोमाइकोटा और ग्लोमेरोमाइकोटा के समान अकोष्ठीय और गोलाकार फोटोबियोन्ट की माप और समस्थानिक संरचना क्लोरोफाइट शैवाल जैसी है। ट्यूब अधिकांशतः आधुनिक विंडो लाइकेन (उथले भूमिगत लाइकेन) की तरह हैं और लोएस पठार के नबखास (वनस्पति-स्थिर टीले) बनाते हैं जो कि मोटाई और विस्तार में गांसु के चीनी लोएस पठार के तुल्य हैं । भू-रासायनिक, पेट्रोग्राफिक और ग्रैनुलोमेट्रिक आलेखों से नूनडे शैलसमूह में तीन अलग-अलग प्रकार के लोएस पेलिओसॉल की पहचान की गई है। नूनडे शैलसमूह एक विशिष्ट नियोप्रोटीरोज़ोइक समुद्री श्वेत घटना नहीं था, लेकिन इलिनॉयस के पियोरिया लोएस और गांसु के चीनी लोएस पठार की तरह चूनामय लोएस था।
Downloads
Metrics
References
Agić H, Högström AE, Moczydłowska M, Jensen S, Palacios T, Meinhold G, Ebbestad JOR, Taylor WL & Høyberget M 2019. Organically–preserved multicellular eukaryote from the early Ediacaran Nyborg Formation, Arctic Norway. Nature Scientific Reports 9: 1−12, https://doi.org/10.1038/s41598–019–50650–x. DOI: https://doi.org/10.1038/s41598-019-50650-x
Ahm ASC, Maloof AC, Macdonald FA, Hoffman PF, Bjerrum CJ, Bold U, Rose CV, Strauss JV & Higgins JA 2019. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”. Earth and Planetary Science Letters 506: 292−307, https://doi.org/10.1016/j.epsl.2018.10.046. DOI: https://doi.org/10.1016/j.epsl.2018.10.046
Ahmadjian V 1967. A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–160, https://doi.org/10.2216/i0031–8884–6–2–127.1. DOI: https://doi.org/10.2216/i0031-8884-6-2-127.1
Aiello IW, Garrison RE, Moore EC, Kastner M & Stakes DS 2001. Anatomy and origin of carbonate structures in a Miocene cold–seep field. Geology 29: 1111–1114, https://doi.org/10.1130/0091–7613(2001)029<1111: AAOOCS>2.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(2001)029<1111:AAOOCS>2.0.CO;2
Aubert D, Stille P & Probst A 2001. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica & Cosmochimica Acta 65: 387−406, https://doi.org/10.1016/S0016–7037(00)00546–9. DOI: https://doi.org/10.1016/S0016-7037(00)00546-9
Bajnóczi B & Kovács–Kis V 2006. Origin of pedogenic needle–fiber calcite revealed by micromorphology and stable isotope composition—a case study of a Quaternary paleosol from Hungary. Geochemistry 66: 203−212, https://doi.org/10.1016/j.chemer.2005.11.002. DOI: https://doi.org/10.1016/j.chemer.2005.11.002
Barbour MM & Farquhar GD 2000. Relative humidity–and ABA–induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant, Cell and Environment 23: 473–485, https://doi.org/10.1046/j.1365–3040.2000.00575.x. DOI: https://doi.org/10.1046/j.1365-3040.2000.00575.x
Barbour MM, Walcroft AS & Farquhar GD 2002. Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant, Cell and Environment 25: 1483–1499, https://doi.org/10.1046/j.0016–8025.2002.00931.x. DOI: https://doi.org/10.1046/j.0016-8025.2002.00931.x
Barfod GH, Albarède F, Knoll AH, Xiao S, Télouk P, Frei R & Baker J 2002. New Lu–Hf and Pb–Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters 201: 203−212, https://doi.org/10.1016/S0012–821X(02)00687–8. DOI: https://doi.org/10.1016/S0012-821X(02)00687-8
Bathurst RGC 1970. Problems of lithification in carbonate muds. Proceedings of the Geologists' Association 81: 429~440, https://doi.org/10.1016/S0016–7878(70)80005–0. DOI: https://doi.org/10.1016/S0016-7878(70)80005-0
Batten DJ 1999. Small palynomorphs. In: Jones TP & Rowe NP (Editors) − Fossil plants and spores: modern techniques. London: Geological Society of London, 15−19.
Bau M 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology 123: 323−333, https://doi.org/10.1007/s004100050159. DOI: https://doi.org/10.1007/s004100050159
Bestland EA, Retallack GJ, Rice AE & Mindszenty A 1996. Late Eocene detrital laterites in central Oregon: mass balance geochemistry, depositional setting and landscape evolution. Geological Society of America Bulletin 108: 285–302, https://doi.org/10.1130/0016–7606(1996)108<0285: LEDLIC>2.3.CO;2. DOI: https://doi.org/10.1130/0016-7606(1996)108<0285:LEDLIC>2.3.CO;2
Bettis EA, Mason JP, Swinehart JB, Miao X & Roberts HM 2003. Cenozoic eolian sedimentary systems of the USA mid–continent. In: Easterbook DJ (Editor)−Quaternary Geology of the United States: INQUA 2003 Field Guide Volume. Reno, Desert Research Institute, 195−218.
Bolhar R & Van Kranendonk MJ 2007. A non–marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research 155: 229−250, https://doi.org/10.1016/j.precamres.2007.02.002. DOI: https://doi.org/10.1016/j.precamres.2007.02.002
Bosak T, Bush J, Flynn M, Liang B, Ono S, Sim MS, & Petroff AP 2010. Formation and stability of oxygen rich bubbles that shape photosynthetic mats. Geobiology 8: 45–55, https://doi.org/10.1111/j.1472–4669.2009.00227.x. DOI: https://doi.org/10.1111/j.1472-4669.2009.00227.x
Boyce CK, Hotton CL, Fogel ML, Cody GD, Hazen RM, Knoll AH & Hueber FM 2007. Devonian landscape heterogeneity recorded by a giant fungus. Geology 25: 399–402, https://doi.org/10.1130/G23384A.1. DOI: https://doi.org/10.1130/G23384A.1
Brimhall GH, Chadwick OA, Lewis CJ, Compston W, Williams IS, Danti KJ, Dietrich WE, Power ME, Hendricks D & Bratt J 1992. Deformational mass transport and invasive processes in soil evolution. Science 255: 695–702, https://doi.org/10.1126/science.255.5045.695. DOI: https://doi.org/10.1126/science.255.5045.695
Broz A, Retallack GJ, Maxwell TM & Silva LC 2021. A record of vapour pressure deficit preserved in wood and soil across biomes. Scientific Reports 11: 1−12, https://doi.org/10.1038/s41598–020–80006–9. DOI: https://doi.org/10.1038/s41598-020-80006-9
Butterfield NJ 2015. The Neoproterozoic. Current Biology 25: 859−863, https://doi.org/10.1016/j.cub.2015.07.021. DOI: https://doi.org/10.1016/j.cub.2015.07.021
Carlisle D, Davis DL, Kildale MB & Stewart RM 1954. Base metal and iron deposits of southern California. In: Jahns RH (Editor) − Geology of southern California. California Division of Mines Bulletin 1: 41−49.
Caxito FA, Frei R, Uhlein GJ, Dias TG, Árting TB & Uhlein A 2018. Multiproxy geochemical and isotope stratigraphy records of a Neoproterozoic Oxygenation Event in the Ediacaran Sete Lagoas cap carbonate, Bambuí Group, Brazil. Chemical Geology 481: 119−132, https://doi.org/10.1016/j.chemgeo.2018.02.007. DOI: https://doi.org/10.1016/j.chemgeo.2018.02.007
Chadwick OA, Brimhall GH & Hendricks DM 1990. From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology 3: 369–390, https://doi.org/10.1016/0169–555X(90)90012–F. DOI: https://doi.org/10.1016/0169-555X(90)90012-F
Chen S, Gagnon AC & Adkins JF 2018. Carbonic anhydrase, coral calcification and a new model of stable isotope vital effects. Geochimica & Cosmochimica Acta 236: 179−197, https://doi.org/10.1016/j.gca.2018.02.032. DOI: https://doi.org/10.1016/j.gca.2018.02.032
Church SE, Cox DP, Wooden, JL, Tingley JV & Vaughn RB 2005. Base–and precious–metal deposits in the Basin and Range of southern California and southern Nevada—Metallogenic implications of lead isotope studies. Earth–Science Reviews 73: 323−346, https://doi.org/10.1016/j.earscirev.2005.04.012. DOI: https://doi.org/10.1016/j.earscirev.2005.04.012
Cloud PE, Wright LA, Williams EG, Diehl P & Walter MR 1974. Giant stromatolites and associated vertical tubes from the Upper Proterozoic Noonday Dolomite, Death Valley region, eastern California. Geological Society of America Bulletin 85: 1869–1882, https://doi.org/10.1669/10.1130/0016–7606(1974)85<1869: GSAAVT>2.0.CO;2. DOI: https://doi.org/10.1130/0016-7606(1974)85<1869:GSAAVT>2.0.CO;2
Condon D, Zhu M, Bowring S, Wang W, Yang A & Jin Y 2005. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308: 95−98, https://doi.org/10.1126/science.1107765. DOI: https://doi.org/10.1126/science.1107765
Corsetti FA & Grotzinger JP 2005. Origin and significance of tube structures in Neoproterozoic post–glacial cap carbonates: example from Noonday Dolomite, Death Valley, United States. Palaios 20: 348−362, https://doi.org/10.2110/palo.2003.p03–96. DOI: https://doi.org/10.2110/palo.2003.p03-96
Corsetti FA & Kaufman AJ 2003. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geological Society of America Bulletin 115: 916−932, https://doi.org/10.1130/B25066.1. DOI: https://doi.org/10.1130/B25066.1
Corsetti FA & Kaufman AJ 2005. The relationship between the Neoproterozoic Noonday Dolomite and the Ibex Formation: new observations and their bearing on ‘Snowball Earth’. Earth–Science Reviews 73: 63−78, https://doi.org/10.1016/j.earscirev.2005.07.002. DOI: https://doi.org/10.1016/j.earscirev.2005.07.002
Creveling JR & Mitrovica JX 2014. The sea–level fingerprint of a Snowball Earth deglaciation. Earth and Planetary Science Letters 399: 74−85, https://doi.org/10.1016/j.epsl.2014.04.029. DOI: https://doi.org/10.1016/j.epsl.2014.04.029
Creveling JR, Bergmann KD & Grotzinger JP 2016. Cap carbonate platform facies model, Noonday Formation, SE California. Geological Society of America Bulletin 128: 1249−1269, https://doi.org/10.1130/B31442.1. DOI: https://doi.org/10.1130/B31442.1
Dalrymple RW, Narbonne GM & Smith L 1985. Eolian action and the distribution of Cambrian shales in North America. Geology 13: 607−610, https://doi.org/10.1130/0091–7613(1985)13<607: EAATDO>2.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(1985)13<607:EAATDO>2.0.CO;2
Derbyshire E 2001. Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth–Science Reviews 54: 231−260, https://doi.org/10.1016/S0012–8252(01)00050–2. DOI: https://doi.org/10.1016/S0012-8252(01)00050-2
Desirò A, Rimington WR, Jacob A, Pol NV, Smith ME, Trappe JM, Bidartondo MI & Bonito G 2017. Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants. IMA Fungus 8: 245−257, https://doi.org/10.5598/imafungus.2017.08.02.03. DOI: https://doi.org/10.5598/imafungus.2017.08.02.03
Doweld A 2001. Prosyllabus tracheophytorum tentamen systematis plantarum vascularium (Tracheophyta) 80: 1−110.
Driese SG, Jirsa MA, Ren M, Brantley SL, Sheldon ND, Parker D & Schmitz M 2011. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Research 189: 1−17, https://doi.org/10.1016/j.precamres.2011.04.003. DOI: https://doi.org/10.1016/j.precamres.2011.04.003
Ehleringer JR & Cook CS 1998. Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect: preliminary observations based on small flask sampling. Tree Physiology 18: 513–519, https://doi.org/10.1093/treephys/18.8–9.513. DOI: https://doi.org/10.1093/treephys/18.8-9.513
Ehleringer JR, Buchmann N & Flanagan LB 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications 10: 412–422, https://doi.org/10.1890/1051–0761(2000)010[0412: CIRIBC]2.0.CO;2. DOI: https://doi.org/10.1890/1051-0761(2000)010[0412:CIRIBC]2.0.CO;2
Evans DAD & Raub TD 2011. Neoproterozoic glacial palaeolatitudes: A global update. In: Arnaud E, Halverson GP & Shields–Zhou G (Editors) − The Geological Record of Neoproterozoic Glaciations. Geological Society of London Memoir 36: 93−112, https://doi.org/10.1144/M36.7. DOI: https://doi.org/10.1144/M36.7
Farquhar GD & Cernusak LA 2012. Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant, Cell and Environment 35: 1221−1231, https://doi.org/10.1111/j.1365–3040.2012.02484.x. DOI: https://doi.org/10.1111/j.1365-3040.2012.02484.x
Fisk HN 1951. Loess and Quaternary geology of the Lower Mississippi Valley. Journal of Geology 50: 333–356, https://doi.org/10.1086/625872. DOI: https://doi.org/10.1086/625872
Flügel E 1977. Fossil algae: Recent results and developments Berlin, Berlin, 375 p. DOI: https://doi.org/10.1007/978-3-642-66516-5
Follmann G 1965. Fensterflechten in der Atacamawüste. Naturwissenschaften 52: 434–435, https://doi.org/10.1007/BF00589697. DOI: https://doi.org/10.1007/BF00589697
Food & Agriculture Organization 1974. Soil Map of the World. Vol. 1 Legend. Paris, UNESCO, 205 p.
Fraiser ML & Corsetti FA 2003. Neoproterozoic carbonate shrubs: interplay of microbial activity and unusual environmental conditions in post–Snowball Earth oceans. Palaios 18: 378−387, https://doi.org/10.1669/0883–1351(2003)018<0378: NCSIOM>2.0.CO;2. DOI: https://doi.org/10.1669/0883-1351(2003)018<0378:NCSIOM>2.0.CO;2
Gan T, Luo T, Pang K, Zhou C, Zhou G, Wan B, Li G, Yi Q, Czaja AD & Xiao S 2021. Cryptic terrestrial fungus–like fossils of the early Ediacaran Period. Nature Communications 12: 1−12, https://doi.org/10.1038/s41467–021–20975–1. DOI: https://doi.org/10.1038/s41467-021-20975-1
Gorbushina AA, Boettcher M, Krumbein WE & Vendrell–Saz M 2001. Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (tepuis) of Venezuela. Geomicrobiology Journal 18: 117−132, https://doi.org/10.1080/01490450151079851. DOI: https://doi.org/10.1080/01490450151079851
Grey K 2005. Ediacaran palynology of Australia. Memoir Association of Australasian Palaeontologists 31: 1–439.
Grimley DA, Follmer LR & McKay ED 1998. Magnetic susceptibility and mineral zonations controlled by provenance in loess along the Illinois and central Mississippi River valleys. Quaternary Research 49: 24−36, https://doi.org/10.1006/qres.1997.1947. DOI: https://doi.org/10.1006/qres.1997.1947
Guido A, Rosso A, Sanfilippo R, Russo F & Mastandrea A 2016. Frutexites from microbial/metazoan bioconstructions of recent and Pleistocene marine caves (Sicily, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 453: 127−138, https://doi.org/10.1098/rspb.2010.0201. DOI: https://doi.org/10.1016/j.palaeo.2016.04.025
Hartl WP, Klapper H, Barbier B, Ensikat HJ, Dronskowski R, Müller P, Ostendorp G, Tye A, Bauer R & Barthlott W 2007. Diversity of calcium oxalate crystals in Cactaceae. Botany 85: 501−517, https://doi.org/10.1139/B07–046. DOI: https://doi.org/10.1139/B07-046
Hawksworth DL 2000. Freshwater and marine lichen–forming fungi. Fungal Diversity 5: 1−7, https://www.fungaldiversity.org/fdp/sfdp/FD_5_1–7.pdf.
Hayes JL, Riebe CS, Holbrook WS, Flinchum BA & Hartsough PC 2019. Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss. Science Advances 5(9): eaao0834, https://doi.org/10.1126/sciadv.aao0834. DOI: https://doi.org/10.1126/sciadv.aao0834
He R, Jiang G, Lu W & Lu Z 2020. Iodine records from the Ediacaran Doushantuo cap carbonates of the Yangtze Block, South China. Precambrian Research 347: 105843, https://doi.org/10.1016/j.precamres.2020.105843. DOI: https://doi.org/10.1016/j.precamres.2020.105843
Heim C, Quéric NV, Ionescu D, Schäfer N & Reitner J 2017. Frutexites–like structures formed by iron oxidizing biofilms in the continental subsurface (Äspö Hard Rock Laboratory, Sweden). PLoS One 12: e0177542, https://doi.org/10.1371/journal.pone.0177542. DOI: https://doi.org/10.1371/journal.pone.0177542
Henley WJ, Hironaka JL, Guillou L, Buchheim MA, Buchheim JA, Fawley MW & Fawley KP 2004. Phylogenetic analysis of the ‘Nannochloris–like’ algae and diagnoses of Picochloris oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Phycologia 43: 641–652, https://doi.org/10.2216/i0031–8884–43–6–641.1. DOI: https://doi.org/10.2216/i0031-8884-43-6-641.1
Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R & Lumbsch HT 2007. A higher–level phylogenetic classification of the Fungi. Mycological Research 111: 509−547, https://doi.org/10.1016/j.mycres.2007.03.004. DOI: https://doi.org/10.1016/j.mycres.2007.03.004
Hobbie EA & Boyce CK 2010. Carbon sources for the Palaeozoic giant fungus Prototaxites inferred from modern analogs. Philosophical Transactions of the Royal Society of London B277: 2149–2156, https://doi.org/10.1098/rspb.2010.0201. DOI: https://doi.org/10.1098/rspb.2010.0201
Hoffman PF 2011. Strange bedfellows: glacial diamictite and cap carbonate from the Marinoan (635 Ma) glaciation in Namibia. Sedimentology 58: 57−119, https://doi.org/10.1111/j.1365–3091.2010.01206.x. DOI: https://doi.org/10.1111/j.1365-3091.2010.01206.x
Hoffman PF & Schrag DP 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14: 129−155, https://doi.org/10.1046/j.1365–3121.2002.00408.x. DOI: https://doi.org/10.1046/j.1365-3121.2002.00408.x
Hoffman PF, Kaufman AJ, Halverson GP & Schrag DP 1998. A Neoproterozoic Snowball Earth. Science 281: 1342−1346, https://doi.org/10.1126/science.281.5381.1342. DOI: https://doi.org/10.1126/science.281.5381.1342
Honegger R, Edwards D & Axe L 2013. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytologist 197: 264−275, https://doi.org/10.1111/nph.12009. DOI: https://doi.org/10.1111/nph.12009
Hongo Y & Nozaki Y 2001. Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya Ridge vent field, Okinawa Trough. Geochemical Journal 35: 347−354, https://doi.org/10.2343/geochemj.35.347. DOI: https://doi.org/10.2343/geochemj.35.347
Howell DG & Link MH 1979. Eocene conglomerate sedimentology and basin analysis, San Diego and the southern California borderland. Journal of Sedimentary Research 49: 517−539, https://doi.org/10.1306/212F777F–2B24–11D7–8648000102C1865D. DOI: https://doi.org/10.1306/212F777F-2B24-11D7-8648000102C1865D
Huang C–M, Wang C–S & Tang Y 2005. Stable carbon and oxygen isotopes of pedogenic carbonates in Ustic Vertisols: implications for paleoenvironmental change. Pedosphere 15: 539–544.
Huang J, Chu X, Chang H & Feng L 2009. Trace element and rare earth element of cap carbonate in Ediacaran Doushantuo Formation in Yangtze Gorges. Chinese Science Bulletin 54: 3295−3302, https://doi.org/10.1007/s11434–009–0305–1. DOI: https://doi.org/10.1007/s11434-009-0305-1
Jobe ZR, Lowe DR & Uchytil SJ 2011. Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea. Marine and Petroleum Geology 28: 843−860, https://doi.org/10.1016/j.marpetgeo.2010.07.012. DOI: https://doi.org/10.1016/j.marpetgeo.2010.07.012
Kalakoutskii LV, Zenova GM, Soina VS & Likhacheva AA 1990. Associations of actinomyces with algae. Actinomycetes 1: 27–42, https://tspace.library.utoronto.ca/html/1807/21221/ac90006.html.
Kasemann SA, Hawkesworth CJ, Prave AR, Fallick AE & Pearson PN 2005. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth and Planetary Science Letters 231: 73−86, https://doi.org/10.1016/j.epsl.2004.12.006. DOI: https://doi.org/10.1016/j.epsl.2004.12.006
Kasemann SA, Prave AR, Fallick AE, Hawkesworth CJ & Hoffmann KH 2010. Neoproterozoic ice ages, boron isotopes, and ocean acidification: Implications for a snowball Earth. Geology 38: 775−778, https://doi.org/10.1130/G30851.1. DOI: https://doi.org/10.1130/G30851.1
Kearsey T, Twitchett RJ & Newell AJ 2012. The origin and significance of pedogenic dolomite from the Upper Permian of the South Urals of Russia. Geological Magazine 149: 291–307, https://doi.org/10.1017/S0016756811000926. DOI: https://doi.org/10.1017/S0016756811000926
Kennedy K & Eyles N 2021. Syn‐rift mass flow generated ‘tectonofacies’ and ‘tectonosequences’ of the Kingston Peak Formation, Death Valley, California, and their bearing on supposed Neoproterozoic panglacial climates. Sedimentology 68: 352−381, https://doi.org/10.1111/sed.12781. DOI: https://doi.org/10.1111/sed.12781
Kennedy MJ, Christie–Blick N & Sohl LE 2001. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology 29: 443–446, https://doi.org/10.1130/0091–7613(2001)029<0443: APCCAI>2.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(2001)029<0443:APCCAI>2.0.CO;2
Khalaf FI & Al–Awadhi JM 2012. Sedimentological and morphological characteristics of gypseous coastal nabkhas on Bubiyan Island, Kuwait, Arabian Gulf. Journal of Arid Environments 82: 31−43, https://doi.org/10.1016/j.jaridenv.2012.02.017. DOI: https://doi.org/10.1016/j.jaridenv.2012.02.017
Kirschvink JL 1991. Late Proterozoic low–latitude global glaciation: the snowball Earth. In: Schopf JW & Klein C (Editors). The Proterozoic Biosphere: a multidisciplinary study−Cambridge, Cambridge University Press, 51−52.
Klappa CF 1979. Lichen stromatolites; criterion for subaerial exposure and a mechanism for the formation of laminar calcretes (caliche). Journal of Sedimentary Research 49: 387−400, https://doi.org/10.1306/212F7752–2B24–11D7–8648000102C1865D. DOI: https://doi.org/10.1306/212F7752-2B24-11D7-8648000102C1865D
Knauth LP, Brilli M & Klonowski S 2003. Isotope geochemistry of caliche developed on basalt. Geochimica & Cosmochimica Acta 67: 185–195, https://doi.org/10.1016/S0016–7037(02)01051–7 . DOI: https://doi.org/10.1016/S0016-7037(02)01051-7
Knoll AH 1985. Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 311: 111−122, https://doi.org/10.1098/rstb.1985.0143. DOI: https://doi.org/10.1098/rstb.1985.0143
Knoll A, Walter M, Narbonne G & Christie–Blick N 2006. The Ediacaran Period: a new addition to the geologic time scale. Lethaia 39: 13–30, https://doi.org/10.1080/00241160500409223. DOI: https://doi.org/10.1080/00241160500409223
Komar PD 1985. The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures. Sedimentology 32: 395–407, https://doi.org/10.1111/j.1365–3091.1985.tb00519.x. DOI: https://doi.org/10.1111/j.1365-3091.1985.tb00519.x
Korsch RJ, Roser BP & Kamprad JL 1993. Geochemical, petrographic and grain–size variations within single turbidite beds. Sedimentary Geology 83: 15–35, https://doi.org/10.1016/0037–0738(93)90180–D. DOI: https://doi.org/10.1016/0037-0738(93)90180-D
Kunzmann M, Halverson GP, Sossi PA, Raub TD, Payne JL & Kirby J 2013. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology 41: 27−30, https://doi.org/10.1130/G33422.1. DOI: https://doi.org/10.1130/G33422.1
Lang Farmer G & Ball TT 1997. Sources of Middle Proterozoic to Early Cambrian siliciclastic sedimentary rocks in the Great Basin: A Nd isotope study. Geological Society of America Bulletin 109: 1193−1205, https://doi.org/10.1130/0016–7606(1997)109<1193: SOMPTE>2.3.CO;2. DOI: https://doi.org/10.1130/0016-7606(1997)109<1193:SOMPTE>2.3.CO;2
Langford RP 2000. Nabkha (coppice dune) fields of south–central New Mexico, USA. Journal of Arid Environments 46: 25−41, https://doi.org/10.1006/jare.2000.0650. DOI: https://doi.org/10.1006/jare.2000.0650
Le Heron DP, Alderton DHM, Collinson ME, Grassineau N, Sykes D & Trundley AE 2016. A eukaryote assemblage intercalated with Marinoan glacial deposits in South Australia. Journal of the Geological Society London 173: 560−568, https://doi.org/10.1144/jgs2015–156. DOI: https://doi.org/10.1144/jgs2015-156
Liu C, Wang Z, Raub TD, Macdonald FA & Evans DA 2014. Neoproterozoic cap–dolostone deposition in stratified glacial meltwater plume. Earth and Planetary Science Letters 404: 22−32, https://doi.org/10.1016/j.epsl.2014.06.039. DOI: https://doi.org/10.1016/j.epsl.2014.06.039
Liu T–S & Chang T–H 1962. The loess of China. Acta Geologica Sinica 42: 1−14.
Lohmann KG 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James NP & Choquette PW (Editors) − Paleokarst. Berlin: Springer, 59−80, https://doi.org/10.1007/978–1–4612–3748–8_3 DOI: https://doi.org/10.1007/978-1-4612-3748-8_3
Long H, Lai Z, Fuchs M, Zhang J & Yang L 2012. Palaeodunes intercalated in loess strata from the western Chinese Loess Plateau: Timing and palaeoclimatic implications. Quaternary International 263: 37−45, https://doi.org/10.1016/j.quaint.2010.12.030 DOI: https://doi.org/10.1016/j.quaint.2010.12.030
Long JS, Hu C, Robbins LL, Byrne RH, Paul JH & Wolny JL 2017. Optical and biochemical properties of a southwest Florida whiting event. Estuarine, Coastal and Shelf Science 96: 258−268, https://doi.org/10.1016/j.ecss.2017.07.017 DOI: https://doi.org/10.1016/j.ecss.2017.07.017
Loyd SJ, Marenco PJ, Hagadorn JW, Lyons TW, Kaufman AJ, Sour–Tovar F & Corsetti FA 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California. Earth and Planetary Science Letters 339: 79–94, https://doi.org/10.1016/j.epsl.2012.05.032 DOI: https://doi.org/10.1016/j.epsl.2012.05.032
Lücking R & Nelsen MP 2018. Ediacarans, Protolichens, and Lichen–Derived Penicillium: A critical reassessment of the evolution of lichenization in Fungi. In: Krings M, Harper CJ, Cuneo NR, & Rothwell GW (Editors) − Transformative paleobotany: Papers to commemorate the life and legacy of Thomas N. Taylor. London: Academic Press, 551−589, https://doi.org/10.1016/B978–0–12–813012–4.00023–1 DOI: https://doi.org/10.1016/B978-0-12-813012-4.00023-1
Ludvigson GA, González LA, Metzger RA, Witzke BJ, Brenner RL, Murillo AP & White TS 1998. Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology. Geology 26: 1039–1042, https://doi.org/10.1130/0091–7613(1998)026<1039: MSLATU>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1998)026<1039:MSLATU>2.3.CO;2
Ludvigson GA, González LA, Fowle DA, Roberts JA, Driese SG, Villarreal MA, Smith JJ, Suarez MB & Nordt LC 2013. Paleoclimatic applications and modern process studies of pedogenic siderite. In: Driese SG & Nordt LC (Editors) − New Frontiers in Paleopedology and Terrestrial Paleoclimatology. Society of Economic Paleontologists and Mineralogists Special Publication 104: 79−87, https://doi.org/10.2110/sepmsp.104.01 DOI: https://doi.org/10.2110/sepmsp.104.01
Lukens WE, Nordt LC, Stinchcomb GE, Driese SG & Tubbs JD 2018. Reconstructing pH of paleosols using geochemical proxies. Journal of Geology 126: 427−449, https://doi.org/10.1086/697693 DOI: https://doi.org/10.1086/697693
MacDonald FA, Cohen PA, Dudás FŐ & Schrag DP 2010. Early Neoproterozoic scale microfossils in the lower Tindir Group of Alaska and the Yukon Territory. Geology 38: 143−146, https://doi.org/10.1130/G25637.1 DOI: https://doi.org/10.1130/G25637.1
Mahon RC, Dehler CM, Link PK, Karlstrom KE & Gehrels GE 2014. Detrital zircon provenance and paleogeography of the Pahrump Group and overlying strata, Death Valley, California. Precambrian Research 251: 102−117, https://doi.org/10.1016/j.precamres.2014.06.005 DOI: https://doi.org/10.1016/j.precamres.2014.06.005
McFadden KA, Xiao S, Zhou C & Kowalewski M 2009. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China. Precambrian Research 173: 170−190, https://doi.org/10.1016/j.precamres.2009.03.009 DOI: https://doi.org/10.1016/j.precamres.2009.03.009
McMahon WJ, Liu AG, Tindal BH & Kleinhans MG 2020. Ediacaran life close to land: Coastal and shoreface habitats of the Ediacaran macrobiota, the Central Flinders Ranges, South Australia. Journal of Sedimentary Research 90: 1463−1499, https://doi.org/10.2110/jsr.2020.029 DOI: https://doi.org/10.2110/jsr.2020.029
Mehmoud M, Yaseen M, Khan EU & Khan MJ 2018. Dolomite and dolomitization model–a short review. International Journal of Hydrology 2: 549‒553, https://doi.org/10.15406/ijh.2018.02.00124 DOI: https://doi.org/10.15406/ijh.2018.02.00124
Melim LA, Swart PK & Eberli GP 2004. Mixing zone diagenesis in the subsurface of Florida and the Bahamas. Journal of Sedimentary Research 76: 904–913, https://doi.org/10.1306/042904740904 DOI: https://doi.org/10.1306/042904740904
Minařı́k L, Žigová A, Bendl J, Skřivan P & Šťastnýd M 1998. The behaviour of rare–earth elements and Y during the rock weathering and soil formation in the Řı́čany granite massif, Central Bohemia. Science of the Total Environment 215: 101−111, https://doi.org/10.1016/S0048–9697(98)00113–2 DOI: https://doi.org/10.1016/S0048-9697(98)00113-2
Minguez D, Kodama KP & Hillhouse JW 2015. Paleomagnetic and cyclostratigraphic constraints on the synchroneity and duration of the Shuram carbon isotope excursion, Johnnie Formation, Death Valley Region, CA. Precambrian Research 266: 395–408, https://doi.org/10.1016/j.precamres.2015.05.033 DOI: https://doi.org/10.1016/j.precamres.2015.05.033
Moore RT 1980. Taxonomic proposals for the classification of marine yeasts and other yeast–like fungi including the smuts. Botanica Marina 23: 361–373.
Morris W & Busby–Spera C 1990. A submarine–fan valley–levee complex in the Upper Cretaceous Rosario Formation: Implication for turbidite facies models. Geological Society of America Bulletin 102: 900−914, https://doi.org/10.1130/0016–7606(1990)102<0900: ASFVLC>2.3.CO;2. DOI: https://doi.org/10.1130/0016-7606(1990)102<0900:ASFVLC>2.3.CO;2
Morton PK 1965. Geology of the Queen of Sheba Lead Mine: Death Valley, California. California Division of Mines and Geology Special Report 88: 1−18.
Munemoto T, Solongo T, Okuyama A, Fukushi K, Yunden A, Batbold T, Altansukh O, Takahashi Y, Iwai H & Nagao S 2020. Rare earth element distributions in rivers and sediments from the Erdenet Cu–Mo mining area, Mongolia. Applied Geochemistry 123: 104800, https://doi.org/10.1016/j.apgeochem.2020.104800 DOI: https://doi.org/10.1016/j.apgeochem.2020.104800
Murphy CP 1983. Point counting pores and illuvial clay in thin section. Geoderma 31: 133−150, https://doi.org/10.1016/0016–7061(83)90004–6 DOI: https://doi.org/10.1016/0016-7061(83)90004-6
Nelson LL, Smith EF, Hodgin EB, Crowley JL, Schmitz MD & MacDonald FA 2020. Geochronological constraints on Neoproterozoic rifting and onset of the Marinoan glaciation from the Kingston Peak Formation in Death Valley, California (USA). Geology 48: 1083–1087, https://doi.org/10.1016/10.1130/G47668.1 DOI: https://doi.org/10.1130/G47668.1
Newberry R 1987. Use of intrusive and calc–silicate compositional data to distinguish contrasting skarn types in the Darwin polymetallic skarn district, California, USA. Mineralium Deposita 22: 207−215, https://doi.org/10.1007/BF00206612 DOI: https://doi.org/10.1007/BF00206612
Newberry RJ, Einaudi MT & Eastman HS 1991. Zoning and genesis of the Darwin Pb–Zn–Ag skarn deposit, California; a reinterpretation based on new data. Economic Geology 86: 960−982, https://doi.org/10.2113/gsecongeo.86.5.960 DOI: https://doi.org/10.2113/gsecongeo.86.5.960
Nickling WG & Wolfe SA 1994. The morphology and origin of nabkhas, region of Mopti, Mali, West Africa. Journal of Arid Environments 28: 13–30, https://doi.org/10.1016/S0140–1963(05)80017–5 DOI: https://doi.org/10.1016/S0140-1963(05)80017-5
Normark WR, Piper DJ, Romans BW, Covault JA, Dartnell P, Sliter RW & Lee HJ 2009. Submarine canyon and fan systems of the California Continental Borderland. In: Lee HJ & Normark WR (Editors) − Earth Science in the Urban Ocean: The Southern California Continental Borderland. Geological Society of America Special Paper 454: 141−168, https://doi.org/10.1130/2009.2454(2.7) DOI: https://doi.org/10.1130/2009.2454(2.7)
Novoselov AA & de Souza Filho CR 2015. Potassium metasomatism of Precambrian paleosols. Precambrian Research 262: 67−83, https://doi.org/10.1016/j.precamres.2015.02.024 DOI: https://doi.org/10.1016/j.precamres.2015.02.024
Nugteren G, Van den Berghe J, van Huissteden JK & Zhisheng A 2004. A Quaternary climate record based on grain size analysis from the Luochuan loess section on the Central Loess Plateau, China. Global and Planetary Change 41: 167–218, https://doi.org/10.1016/j.gloplacha.2004.01.004 DOI: https://doi.org/10.1016/j.gloplacha.2004.01.004
Ohnemueller F, Prave AR, Fallick AE & Kasemann SA 2014. Ocean acidification in the aftermath of the Marinoan glaciation. Geology 42: 1103−1106, https://doi.org/10.1130/G35937.1 DOI: https://doi.org/10.1130/G35937.1
Parsons AJ, Wainwright J, Schlesinger WH & Abrahams AD 2003. The role of overland flow in sediment and nitrogen budgets of mesquite dunefields, southern New Mexico. Journal of Arid Environments 53: 61−71. DOI: https://doi.org/10.1006/jare.2002.1021
Peckmann J, Goedert JL, Thiel V, Michaelis W & Reitner J 2002. A comprehensive approach to the study of methane‐seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49: 855−873, https://doi.org/10.1046/j.1365–3091.2002.00474.x DOI: https://doi.org/10.1046/j.1365-3091.2002.00474.x
Petterson R, Prave AR, Wernicke BP & Fallick AE 2011. The Neoproterozoic Noonday Formation, Death Valley region, California. Geological Society of America Bulletin 123: 1317−1336, https://doi.org/10.1130/B30281.1 DOI: https://doi.org/10.1130/B30281.1
Petterson R, Prave AR, Wernicke BP & Fallick AE 2013. The Neoproterozoic Noonday Formation, Death Valley region, California: Reply. Geological Society of America Bulletin 125: 252−255, https://doi.org/10.1130/B30700.1 DOI: https://doi.org/10.1130/B30700.1
Prave AR 1999. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: the Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology 27: 339−342, https://doi.org/10.1130/0091–7613(1999)027<0339: TDTCCT>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1999)027<0339:TDTCCT>2.3.CO;2
Pye K & Sherwin D 1999. Loess. In: Goudie AS, Livingstone I & Stokes E (Editors)−Aeolian Environments, Sediments and Landforms. Chichester, Wiley, 239−259, https://doi.org/10.1086/625870
Reesink AJH, Best J, Freiburg JT, Webb ND, Monson CC & Ritzi RW 2020. Interpreting pre–vegetation landscape dynamics: The Cambrian Lower Mount Simon Sandstone, Illinois, USA. Journal of Sedimentary Research 90: 1614−1641, https://doi.org/10.2110/jsr.2020.71 DOI: https://doi.org/10.2110/jsr.2020.71
Retallack GJ 1991. Miocene paleosols and ape habitats of Pakistan and Kenya. New York, Oxford University Press, 346 p.
Retallack GJ 1997. A colour guide to paleosols. Wiley, Chichester, 175 p.
Retallack GJ 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33: 333−336, https://doi.org/10.1130/G21263.1 DOI: https://doi.org/10.1130/G21263.1
Retallack GJ 2011. Neoproterozoic loess and limits to Snowball Earth. Journal of the Geological Society of London 168: 289–308, https://doi.org/10.1144/0016–76492010–051 DOI: https://doi.org/10.1144/0016-76492010-051
Retallack GJ 2013. Ediacaran life on land. Nature 493: 89–92, https://doi.org/10.1038/nature11777 DOI: https://doi.org/10.1038/nature11777
Retallack GJ 2015a. Late Ordovician glaciation initiated by early land plant evolution, and punctuated by greenhouse mass–extinctions. Journal of Geology 123: 509–538, https://doi.org/10.1086/683663 DOI: https://doi.org/10.1086/683663
Retallack GJ 2015b. Silurian vegetation stature and density inferred from fossil soils and plants in Pennsylvania, USA. Journal of the Geological Society London 172: 693–709, https://doi.org/10.1144/jgs2015–022 DOI: https://doi.org/10.1144/jgs2015-022
Retallack GJ 2015c. Acritarch evidence of a late Precambrian adaptive radiation of Fungi. Botanica Pacifica 4: 19−33, https://doi.org/10.17581/bp.2015.04203 DOI: https://doi.org/10.17581/bp.2015.04203
Retallack GJ 2016. Field and laboratory tests for recognition of Ediacaran paleosols. Gondwana Research 36: 94–110, https://doi.org/10.1016/j.gr.2016.05.001 DOI: https://doi.org/10.1016/j.gr.2016.05.001
Retallack GJ 2020. Boron paleosalinity proxy for deeply buried Paleozoic and Ediacaran fossils. Palaeogeography Palaeoclimatology Palaeoecology 540: 109536, https://doi.org/10.1016/j.palaeo.2019.109536 DOI: https://doi.org/10.1016/j.palaeo.2019.109536
Retallack GJ 2021. Zebra rock and other Ediacaran paleosols from Western Australia. Australian Journal of Earth Sciences 68: 532−556, https://doi.org/10.1080/08120099.2020.1820574 DOI: https://doi.org/10.1080/08120099.2020.1820574
Retallack GJ 2022. Ordovician–Devonian lichen canopies before evolution of woody trees. Gondwana Research 106: 211−223. https://doi.org/10.1016/j.gr.2022.01.010 DOI: https://doi.org/10.1016/j.gr.2022.01.010
Retallack GJ & Broz AP 2020. Arumberia and other Ediacaran–Cambrian fossils of central Australia. Historical Biology 32: 1964−1988, https://doi.org/10.1080/08912963.2020.1755281 DOI: https://doi.org/10.1080/08912963.2020.1755281
Retallack GJ & Burns SF 2016. The effects of soil on the taste of wine. GSA Today 26(5): 4−9, https://doi.org/10.1130/GSATG260A.1. DOI: https://doi.org/10.1130/GSATG260A.1
Retallack GJ & Landing E 2014. Affinities and architecture of Devonian trunks of Prototaxites loganii. Mycologia 106: 1143−1158, https://doi.org/10.3852/13–390 DOI: https://doi.org/10.3852/13-390
Retallack GJ & Mindszenty A 1994. Well preserved late Precambrian paleosols from northwest Scotland. Journal of Sedimentary Research 64: 264−281, https://doi.org/10.1306/D4267D7A–2B26–11D7–8648000102C1865D DOI: https://doi.org/10.1306/D4267D7A-2B26-11D7-8648000102C1865D
Retallack GJ, Krull ES, Thackray GD & Parkinson D 2013. Problematic urn–shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa. Precambrian Research 235: 71−87, https://doi.org/10.1016/j.precamres.2013.05.015 DOI: https://doi.org/10.1016/j.precamres.2013.05.015
Retallack GJ, Marconato A, Osterhout JT, Watts KE & Bindeman IN 2014. Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. Journal of the Geological Society London 171: 709–722, https://doi.org/10.1144/jgs2014–016 DOI: https://doi.org/10.1144/jgs2014-016
Retallack GJ, Broz AP, Lai LSH & Gardner K 2021a. Neoproterozoic marine chemostratigraphy, or eustatic sea level change? Palaeogeography, Palaeoclimatology, Palaeoecology 562: 110155, https://doi.org/10.1016/j.palaeo.2020.110155 DOI: https://doi.org/10.1016/j.palaeo.2020.110155
Retallack GJ, Chen Z–Q, Huan Y & Feng HY 2021b. Mesoproterozoic alluvial paleosols of the Ruyang Group in Henan, China. Precambrian Research 364: 106361, https://doi.org/10.1016/j.precamres.2021.106361 DOI: https://doi.org/10.1016/j.precamres.2021.106361
Schidlowski M 2001. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Research 106: 117−134, https://doi.org/10.1016/S0301–9268(00)00128–5 DOI: https://doi.org/10.1016/S0301-9268(00)00128-5
Schopf JW 1991. Proterozoic prokaryotes: affinities, geologic distribution, and evolutionary trends. In: Schopf JW & Klein C (Editors) − The Proterozoic Biosphere: a multidisciplinary study. Cambridge: Cambridge University Press, 195−218.
Scopelliti G & Russo V 2021. Petrographic and geochemical characterization of the Middle‒Upper Jurassic Fe–Mn crusts and mineralizations from Monte Inici (north western Sicily): genetic implications. International Journal of Earth Sciences 110: 559–582, https://doi.org/10.1007/s00531–020–01971–0 DOI: https://doi.org/10.1007/s00531-020-01971-0
Scotese CR 2021. An atlas of Phanerozoic paleogeographic maps: the seas come in and the seas go out. Annual Review of Earth and Planetary Sciences 49: 679–728, https://doi.org/10.1146/annurev–earth–081320–064052 DOI: https://doi.org/10.1146/annurev-earth-081320-064052
Sheldon ND & Retallack GJ 2001. Equation for compaction of paleosols due to burial. Geology 29: 247−250, https://doi.org/10.1130/0091–7613(2001)029<0247: EFCOPD>2.0.CO;2 DOI: https://doi.org/10.1130/0091-7613(2001)029<0247:EFCOPD>2.0.CO;2
Sheldon ND & Tabor NJ 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science Reviews 95: 1−52, https://doi.org/10.1016/j.earscirev.2009.03.004 DOI: https://doi.org/10.1016/j.earscirev.2009.03.004
Shoshoni Language Project 2019. Website: shoshoniproject.utah.edu, accessed December 31, 2019.
Soil Survey Staff 2014. Keys to Soil Taxonomy. Washington DC: Natural Resources Conservation Service, 358 p.
Sondi I & Juračić M 2010. Whiting events and the formation of aragonite in Mediterranean Karstic Marine Lakes: new evidence on its biologically induced inorganic origin. Sedimentology 57: 85−95, https://doi.org/10.1111/j.1365–3091.2009.01090.x DOI: https://doi.org/10.1111/j.1365-3091.2009.01090.x
Stace HCT, Hubble GD, Brewer R, Northcote KH, Sleeman JR, Mulcahy MJ & Hallsworth EG 1968. A handbook of Australian soils. Adelaide, Rellim, 435 p. DOI: https://doi.org/10.1097/00010694-196910000-00013
Sturm EV, Frank–Kamenetskaya O, Vlasov D, Zelenskaya M, Sazanova K, Rusakov A & Kniep R 2015. Crystallization of calcium oxalate hydrates by interaction of calcite marble with fungus Aspergillus niger. American Mineralogist 100: 2559−2565, https://doi.org/10.2138/am–2015–5104 DOI: https://doi.org/10.2138/am-2015-5104
Sugahara H, Sugitani K, Mimura K, Yamashita F & Yamamoto K 2010. A systematic rare–earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: Implications for the origin of microfossil–bearing black cherts. Precambrian Research 177: 73–87, https://doi.org/10.1016/j.precamres.2009.10.005 DOI: https://doi.org/10.1016/j.precamres.2009.10.005
Sun D, Bloemendal J, Rea DK, An Z, Vandenberghe J, Lu H, Su R & Liu T 2004. Bimodal grain–size distribution of Chinese loess, and its palaeoclimatic implications. Catena 55: 325−334, https://doi.org/10.1016/S0341–8162(03)00109–7 DOI: https://doi.org/10.1016/S0341-8162(03)00109-7
Sun J 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters 203: 845−859, https://doi.org/10.1016/S0012–821X(02)00921–4 DOI: https://doi.org/10.1016/S0012-821X(02)00921-4
Sun Y, An Z, Clemens SC, Bloemendal J & Vandenberghe J 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Science Letters 297: 525−535, https://doi.org/10.1016/j.epsl.2010.07.004 DOI: https://doi.org/10.1016/j.epsl.2010.07.004
Surge DM, Savarese M, Dodd JR & Lohmann KC 1997. Carbon isotopic evidence for photosynthesis in Early Cambrian oceans. Geology 25: 503–506, https://doi.org/10.1130/0091–7613(1997)025<0503: CIEFPI>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1997)025<0503:CIEFPI>2.3.CO;2
Swineford A & Frye JC 1951. Petrography of the Peoria loess in Kansas. Journal of Geology 59: 306−322, https://doi.org/10.1086/625870. DOI: https://doi.org/10.1086/625870
Talbot MR 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology Isotope Geoscience Section 80: 261–279, https://doi.org/10.1016/0168–9622(90)90009–2 DOI: https://doi.org/10.1016/0168-9622(90)90009-2
Taylor SR & McLennan SM 1985. The continental crust: its composition and evolution. Oxford, Blackwell, 312 p.
Thompson JB, Schultze–Lam S, Beveridge TJ & Des Marais DJ 1997. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography 42: 133−141, https://doi.org/10.4319/lo.1997.42.1.0133 DOI: https://doi.org/10.4319/lo.1997.42.1.0133
Timdal E 2017. Endocarpon crystallinum found in Crete, a window–lichen new to Europe. Herzogia 30: 309−312, https://doi.org/10.13158/heia.30.1.2017.309 DOI: https://doi.org/10.13158/heia.30.1.2017.309
Torsvik TH & Cocks LRM 2013. Gondwana from top to base in space and time. Gondwana Research 24: 999−1030, https://doi.org/10.1016/j.gr.2013.06.012 DOI: https://doi.org/10.1016/j.gr.2013.06.012
Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber WH, Li DZ, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ & Smith GF 2018. International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile. 159: 1−254, https://doi.org/10.12705/Code.2018 DOI: https://doi.org/10.12705/Code.2018
Twitchell DC & Roberts DG 1982. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson and Baltimore Canyons. Geology 10: 408−412, https://doi.org/10.1130/0091–7613(1982)10<408: MDADOS>2.0.CO;2 DOI: https://doi.org/10.1130/0091-7613(1982)10<408:MDADOS>2.0.CO;2
Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG & Strauss H 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161: 59–88, https://doi.org/10.1016/S0009–2541(99)00081–9 DOI: https://doi.org/10.1016/S0009-2541(99)00081-9
Verrecchia EP & Verrecchia KE 1994. Needle–fiber calcite; a critical review and a proposed classification. Journal of Sedimentary Research 64: 650−664, https://doi.org/10.1306/D4267E33–2B26–11D7–8648000102C1865D DOI: https://doi.org/10.1306/D4267E33-2B26-11D7-8648000102C1865D
Vogel S 1955. Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beitrage Biologie Pflanzen 31: 45–135.
Wang H, Mason JA & Balsam WL 2006. The importance of both geological and pedological processes in control of grain size and sedimentation rates in Peoria Loess. Geoderma 136: 388–400, https://doi.org/10.1016/j.geoderma.2006.04.005 DOI: https://doi.org/10.1016/j.geoderma.2006.04.005
Wanless HR 1979. Limestone response to stress; pressure solution and dolomitization. Journal of Sedimentary Research 49: 437−462, https://doi.org/10.1016/j.geoderma.2006.04.005 DOI: https://doi.org/10.1306/212F7766-2B24-11D7-8648000102C1865D
Wernicke B, Axen GJ & Snow JK 1988. Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada. Geological Society of America Bulletin 100: 1738−1757, https://doi.org/10.1130/0016–7606(1988)100<1738: BARETA>2.3.CO;2. DOI: https://doi.org/10.1130/0016-7606(1988)100<1738:BARETA>2.3.CO;2
Williams EG, Wright LA & Troxel BW 1974. The Noonday Dolomite and equivalent stratigraphic units, southern Death Valley region, California. In: Wright LA, Troxel BW, Williams EG, Roberts MT & Diehl PE (Editors)−Guidebook: Death Valley Region, California and Nevada. Boulder: Geological Society of America, 73−77.
Williams GE, Gostin VA, McKirdy DM & Preiss WV 2008. The Elatina glaciation, late Cryogenian (Marinoan Epoch), South Australia: sedimentary facies and palaeoenvironments. Precambrian Research 163: 307–331, https://doi.org/10.1016/j.precamres.2007.12.001. DOI: https://doi.org/10.1016/j.precamres.2007.12.001
Wilson MJ, Jones D & Russell JD 1980. Glushinskite, a naturally occurring magnesium oxalate. Mineralogical Magazine 43: 837−840, https://doi.org/10.1180/minmag.1980.043.331.02 DOI: https://doi.org/10.1180/minmag.1980.043.331.02
Wray JL 1977. Calcareous Algae. New York, Elsevier, 185 p.
Wright LA, Troxel BW, Williams EG, Roberts MT & Diehl PE 1976. Precambrian sedimentary environments of the Death Valley region, eastern California: Geologic features of Death Valley, California. California Division of Mines and Geology Special Report 106: 7−15.
Xiao SH & Narbonne GM 2020. The Ediacaran Period. In: Gradstein FM, Ogg JG, Schmitz MD & Ogg GM (Editors) − Geologic Time Scale 2020. Amsterdam: Elsevier, 521−561, https://doi.org/10.1016/B978–0–12–824360–2.00018–8 DOI: https://doi.org/10.1016/B978-0-12-824360-2.00018-8
Yang J & Wei J–C 2008. The new lichen species Endocarpon crystallinum from semiarid deserts in China. Mycotaxon 106: 445–448.
Yao Y–J, Pegler DN & Young TWK 1996. Genera of Endogonales. Kew: Royal Botanical Gardens, 229 p.
Yasukawa K, Nakamura K, Fujinaga K, Machida S, Ohta J, Takaya Y & Kato Y 2015. Rare–earth, major, and trace element geochemistry of deep–sea sediments in the Indian Ocean: Implications for the potential distribution of REY–rich mud in the Indian Ocean. Geochemical Journal 49: 621−635, https://doi.org/10.2343/geochemj.2.0361 DOI: https://doi.org/10.2343/geochemj.2.0361
Yu W, Algeo TJ, Zhou Q, Du Y & Wang P 2020. Cryogenian cap carbonate models: A review and critical assessment. Palaeogeography, Palaeoclimatology, Palaeoecology 552: 109727, 109727. https://doi.org/10.1016/j.palaeo.2020.109727 DOI: https://doi.org/10.1016/j.palaeo.2020.109727
Yuan X–L, Xiao S–H & Taylor TN 2005. Lichen–like symbiosis 600 million years ago. Science 308: 1017–1020, https://doi.org/10.1126/science.1111347 DOI: https://doi.org/10.1126/science.1111347
Yule BL, Roberts S & Marshall JEA 2000. The thermal evolution of sporopollenin. Organic Geochemistry 31; 859−870.https://doi.org/10.1016/S0146–6380(00)00058–9 DOI: https://doi.org/10.1016/S0146-6380(00)00058-9
Zang W & Walter MR 1989. Latest Proterozoic plankton from the Amadeus Basin in Central Australia. Nature 337: 642–645, https://doi.org/10.1038/337642a0. DOI: https://doi.org/10.1038/337642a0
Zhang F, Xu H, Konishi H, Kemp JM, Roden EE & Shen Z 2012. Dissolved sulfide–catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite. Geochimica & Cosmochimica Acta 97: 148−165, https://doi.org/10.1016/j.gca.2012.09.008 DOI: https://doi.org/10.1016/j.gca.2012.09.008
Zhou C, Huyskens MH, Lang X, Xiao S & Yin Q–Z 2019. Calibrating the termination of Cryogenian global glaciations. Geology 47: 251−254, https://doi.org/10.1130/G45719.1 DOI: https://doi.org/10.1130/G45719.1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Palaeosciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.