Palaeoenvironmental and stratigraphical implications of the palynoflora and macro–charcoal from the early Permian of the Chuperbhita Coalfield, Rajmahal Basin, Jharkhand, India

Authors

  • Srikanta Murthy Birbal Sahni Institute of Palaeosciences, 53, University Road, Lucknow 226007, India
  • Deepa Agnihotri Birbal Sahni Institute of Palaeosciences, 53, University Road, Lucknow 226007, India
  • Prof. Dieter Uhl Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt am Main, Germany
  • Prof. Andre Jasper Universidade do Vale do Taquari – UNIVATES, Avenida Avelino Talini 171, 95914−014 Lajeado, Rio Grande do Sul, Brazil
  • Ranjit Kumar Singh Department of Geology, Sahibganj College, Sahibganj

DOI:

https://doi.org/10.54991/jop.2023.1865

Keywords:

Macro Charcoal, Palynology, Palaeowildfire, Early Permian, Rajmahal Basin, India

Abstract

Palynological and macro–charcoal studies have been carried out on fossiliferous material from the upper seam of the Barakar Formation of Simlong Open Cast Mine (OCM), Chuperbhita Coalfield, India. The palynoassemblage exhibits a dominance of non– striate bisaccate pollen, mainly Scheuringipollenites, and a subdominance of striate bisaccate pollen assignable to Faunipollenites, suggesting an early Permian age (Artinskian). The presence of macro–charcoal indicates the occurrence of wildfire at the time of deposition of the Barakar Formation at Simlong OCM. The composition of the palynological assemblage, as well as anatomical details of the macro–charcoal, indicate that the source vegetation was dominated by gymnosperms. The non–abraded edges of many charcoal fragments suggest that the charcoal has not been transported over a long distance, indicating local to regional fires. Together with previous records of macro–charcoal, and the high inertinite contents of many Permian coals from India, this study further supports the widespread occurrence of palaeo–wildfires as frequent sources of disturbance in continental ecosystems in this part of Gondwana during the early Permian.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abu Hamad AMB, Jasper A & Uhl D 2012. The record of Triassic charcoal and other evidence for palaeo–wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology 96–97: 60–71. DOI: https://doi.org/10.1016/j.coal.2012.03.006

Anand–Prakash & Srivastava SC 1984. Miofloral studies of the Lower Gondwana sediments in Johilla Coalfield, Madhya Pradesh, India. Palaeobotanist 32: 243–252. DOI: https://doi.org/10.54991/jop.1984.1382

Baksi AK, Tiwari RS, Tripathi A & Farrar E 1992. Geochemical geochronological and palynological observations on lower–cretaceous lavas in the Rajmahal Basin. Abstracts from the National Symposium on Mesozoic magmatism of the eastern margin of India, Patna. University of Patna, 16–17.

Banerjee M & D’Rozario A 1988. Biostratigraphy and environment of deposition in the Lower Gondwana sediments of Chuperbhita Coalfield, Rajmahal Hills. Journal of Palaeontological Society of India 33: 73–90.

Banerjee M & D’Rozario A 1990. Palynostratigraphic correlation of Lower Gondwana sediments in the Chuperbhita and Hura Basins, Rajmahal Hills, Eastern India. Review of Palaeobotany and Palynology 65: 239–255. DOI: https://doi.org/10.1016/0034-6667(90)90074-S

Benício JRW, Jasper A, Spiekermann R, Garavaglia L, Pires–Oliveira EF, Machado NTG & Uhl D 2019. Recurrent palaeo–wildfires in a Cisularian coal seam: A palaeobotanical view on high–inertinite coals from the lower Permian of the Paraná Basin, Brazil. PLoS One, v.14, e0213854. DOI: https://doi.org/10.1371/journal.pone.0213854

Bharadwaj DC & Srivastava AK 1986. Palynological dating of bottom seam in Gomani river section, Chuperbhita Coalfield, Santhal Pargans, Bihar, India, Abstract–National Seminar on coal Resources of India, Banaras.

Bhattacharyya AP 1997. Palynological recognition of the Karharbari–Barakar formations in the sub–surface sediments of Wardha Coalfield, Maharashtra, India. Palaeobotanist 46: 217–219. DOI: https://doi.org/10.54991/jop.1997.1342

Brown SAE, Scott AC, Glasspool IJ & Collinson ME 2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research 36: 162–190. DOI: https://doi.org/10.1016/j.cretres.2012.02.008

Degani–Schmidt I, Guerra–Sommer M, Mendonça J, deO Mendonça FJGR, Jasper A, Cazzulo–Klepzig M & Iannuzzi R 2015. Charcoalified logs as evidence of hypautochthonous/autochthonous wildfire events in a peat–forming environment from the Permian of southern Paraná Basin (Brazil). International Journal of Coal Geology 146: 55–67. DOI: https://doi.org/10.1016/j.coal.2015.05.002

Diessel CFK 2010. The stratigraphic distribution of inertinite. International Journal of Coal Geology 81: 251–268. DOI: https://doi.org/10.1016/j.coal.2009.04.004

Gee ER 1932. Geology and coal resources of Raniganj Coalfield. Memoirs of the Geological Survey of India 61: 1–343.

Ghosh AK, Roy SP & Laskar T 1984. Biostratigraphy and some anomalous petrological properties of Chuparbhita coals, Rajmahal coalfields, Bihar. Evolutionary botany and biostratigraphy, A.K. Ghosh Commemoration Volume: 323–330.

Glasspool IJ 2000. A major fire event recorded in the mesofossils and petrology of the late Permian Lower Whybrow coal seam, Sydney Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 164: 357–380. DOI: https://doi.org/10.1016/S0031-0182(00)00194-2

Glasspool IJ 2003. Hypautochthonous–allochthonous coal deposition in the Permian, South African, Witbank Basin No. 2 seam; a combined approach using sedimentology, coal petrology and palaeontology. International Journal of Coal Geology 53: 81–135. DOI: https://doi.org/10.1016/S0166-5162(02)00193-3

Glasspool IJ, Edwards D & Axe L 2004. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32: 381–383. DOI: https://doi.org/10.1130/G20363.1

Glasspool IJ & Gastaldo RA 2022. Silurian wildfire proxies and atmospheric oxygen. Geology 50(9): 1048–1052. DOI: https://doi.org/10.1130/G50193.1

Glasspool IJ & Gastaldo RA 2023. A baptism by fire: fossil charcoal from eastern Euramerica reveals the earliest (Homerian) terrestrial biota evolved in a flammable world. Journal of the Geological Society 180 (2): jgs2022ejgs2072 DOI: https://doi.org/10.1144/jgs2022-072

Guha PK, Mukherjee AK & Mitra ND 1978. A report on the exploratory drilling in Chuperbhita basin Rajmahal Coalfields S.P District, Bihar, Unpublished report Geological Survey of India.

Holdgate GR, McLoughlin S, Drinnan AN, Finkelman RB, Willett JC & Chiehowsky LA 2005. Inorganic chemistry, petrography and palaeobotany of Permian coals in the Prince Charles Mountains, East Antarctica. International Journal of Coal Geology 63: 156–177. DOI: https://doi.org/10.1016/j.coal.2005.02.011

Jasper A, Agnihotri D, Tewari R, Spiekermann R, Pires EF, Da Rosa AAS & Uhl D 2017. Fires in the mire: Repeated fire events in early Permian ‘peat forming’ vegetation of India. Geological Journal 52: 955–969. DOI: https://doi.org/10.1002/gj.2860

Jasper A, Uhl D, Guerra–Sommer M, Abu Hamad A & Machado NT 2011a. Charcoal remains from a tonstein layer in the Faxinal Coalfield, Lower Permian, southern Paraná Basin, Brazil. Anais da Academia Brasileira de Ciências 83: 471–481. DOI: https://doi.org/10.1590/S0001-37652011000200009

Jasper A, Uhl D, Guerra–Sommer M, Bernardes–de–Oliveira MEC & Machado NTG 2011b. Upper Paleozoic charcoal remains from South America: multiple evidences of fire events in the coal–bearing strata of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 306: 205–218. DOI: https://doi.org/10.1016/j.palaeo.2011.04.022

Jasper A, Manfroi J, Ost Schmidt E, Machado NTG & Uhl D 2011c. Evidências paleobotânicas de incêndios vegetacionais no Afloramento Morro Papaléo, Paleozóico Superior do Rio Grande do Sul, Brasil. Geonomos 19: 18–27.

Jasper A, Guerra–Sommer M, Abu Hamad AMB, Bamford M, Bernardes de–Oliveira MEC, Tewari R & Uhl D 2013. The burning of Gondwana: Permian fires on the southern continent–A palaeobotanical approach. Gondwana Research 24: 148–160. DOI: https://doi.org/10.1016/j.gr.2012.08.017

Jasper A, Guerra–Sommer M, Uhl D, Bernardes–de–Oliveira MEC, Ghosh AK, Tewari R & Secchi MI 2012. Palaeobotanical evidence of wildfires in the Upper Permian of India: macroscopic charcoal remains from the Raniganj Formation, Damodar Valley Basin. Palaeobotanist 61: 75–82. DOI: https://doi.org/10.54991/jop.2012.351

Jasper A, Pozzebon–Silva Â, Siqueira Carniere J & Uhl D 2021. Palaeozoic and Mesozoic palaeo–wildfires: An overview on advances in the 21st Century. Journal of Palaeosciences 70: 159–171. DOI: https://doi.org/10.54991/jop.2021.13

Jasper A, Uhl D, Agnihotri D, Tewari R, Pandita SK, Benício JRW, Pires EF, Da Rosa AAS, Bhat GD & Pillai SSK 2016. Evidence of wildfires in the late Permian (Changsinghian) Zewan Formation of Kashmir, India. Current Science 110: 419–423. DOI: https://doi.org/10.18520/cs/v110/i3/419-423

Jasper A, Uhl D, Guerra–Sommer M & Mosbrugger V 2008. Palaeobotanical evidence of wildfires in the Late Palaeozoic of South America–Early Permian, Rio Bonito Formation, Paraná Basin, Rio Grande do Sul, Brazil. Journal of South American Earth Sciences 26: 435–444. DOI: https://doi.org/10.1016/j.jsames.2008.08.002

Jha N & Aggarwal N 2010. Early and late Permian palynoflora from Lower Gondwana sediments of Gundala area, Godavari Graben, Andhra Pradesh, India. Palaeobotanist 59: 71–80. DOI: https://doi.org/10.54991/jop.2010.190

Jha N & Aggarwal N 2011. Palynological correlation of coal–bearing horizons in Gundala area, Godavari Graben, India. Journal of Earth System Sciences 120: 663–679. DOI: https://doi.org/10.1007/s12040-011-0095-0

Jha N & Aggarwal N 2012. Permian–Triassic palynostratigraphy in Mailaram area, Godavari Graben, Andhra Pradesh, India. Journal of Earth System Sciences 121: 1257–1285. DOI: https://doi.org/10.1007/s12040-012-0224-4

Kauffmann M, Jasper A, Uhl D, Meneghini J, Osterkamp IC, Zvirtes G & Pires EF 2016. Evidence for palaeo–wildfire in the Late Permian palaeotropics–charcoal from the Motuca Formation in the Parnaíba Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 450: 122–128. DOI: https://doi.org/10.1016/j.palaeo.2016.03.005

Kubik R, Marynowski L, Uhl D & Jasper A 2020. Co–occurrence of charcoal, polycyclic aromatic hydrocarbons and terrestrial biomarkers in an early Permian swamp to lagoonal depositional system, Paraná Basin, Rio Grande do Sul, Brazil. International Journal of Coal Geology 230: 103590. DOI: https://doi.org/10.1016/j.coal.2020.103590

Lu M, Ikejiri T & Lu YH 2021. A synthesis of the Devonian wildfire record: Implications for paleogeography, fossil flora, and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 571: 110321. DOI: https://doi.org/10.1016/j.palaeo.2021.110321

Mahesh S, Murthy S, Chakraborty B & Roy MD 2015. Fossil charcoal as Palaeofire indicators: Taphonomy and morphology of charcoal remains in sub–surface Gondwana sediments of south Karanpura Coalfield. Journal of Geological Society of India 85: 567–576. DOI: https://doi.org/10.1007/s12594-015-0251-2

Mahesh S, Murthy S, Gautam S, Souza P, Kavali PS, Bernardes–de–Oliveira MEC, Ram Awatar & Félix CM 2017. Macroscopic charcoal remains as evidence of wildfire from late Permian Gondwana sediments of India: Further contribution to global fossil charcoal database. Palaeoworld 26 (4): 638–649. DOI: https://doi.org/10.1016/j.palwor.2017.05.003

Maheshwari HK 1967. Studies in the Glossopteris flora of India–29 Miospore assemblage from the Lower Gondwana exposures along Bansloi River in Rajmahal Hills, Bihar. Palaeobotanist 15(3): 258–280. DOI: https://doi.org/10.54991/jop.1966.770

Manfroi J, Uhl D, Guerra–Sommer M, Francischin H, Martinelli AG, Soares MB & Jasper A 2015. Extending the database of Permian palaeo–wildfire on Gondwana: charcoal remains from the Rio do Rasto Formation (Paraná Basin), Middle Permian, Rio Grande do Sul state, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 436: 77–84. DOI: https://doi.org/10.1016/j.palaeo.2015.07.003

Mays C & McLoughlin S 2022. End–Permian burnout: the role of Permian–Triassic wildfires in extinction, carbon cycling, and environmental change in eastern Gondwana. Palaios 37: 292–317. DOI.: 10.2110/palo.2021.051. DOI: https://doi.org/10.2110/palo.2021.051

Meena KL 2000. Palynodating of subsurface sediments of bore–hole IBH–6 in IB River Coalfield, Orissa, India. Geophytology 29: 111–113.

Mishra DP, Murthy S, Pandey B & Singh AS 2021. Palaeobotanical evidence for Artinskian wildfire in the Talcher Coalfield, Mahanadi Basin, India. Journal of the Palaeontological Society of India 66(2): 303–314.

Mishra DP, Singh VP, Saxena A, Uhl D, Murthy S, Pandey B & Kumar R 2022. Palaeoecology and depositional setting of an Early Permian (Artinskian) mire based on a multi–proxy study at the Jagannath Coal Mine (Talcher Coalfield), Mahanadi Basin, India. Palaeogeography, Palaeoclimatology, Palaeoecology 601, 111124: DOI.: 10.1016/j.palaeo.2022.111124. DOI: https://doi.org/10.1016/j.palaeo.2022.111124

Mukhopadhyay G, Mukhopadhyay SK, Roychowdhury M & Parui PK 2010. Stratigraphic correlation between different Gondwana Basins of India. Journal of the Geological Society of India 76: 251–266. DOI: https://doi.org/10.1007/s12594-010-0097-6

Murthy S, Chakraborti B & Roy MD 2010. Palynodating of subsurface sediments, Raniganj Coalfield, Damodar Basin, West Bengal. Journal of Earth System Sciences 119 (5): 701–710. DOI: https://doi.org/10.1007/s12040-010-0049-y

Murthy S, Kavali PS, Di Pasquo M & Chakraborti B 2018. Late Pennsylvanian and early Cisuralian palynofloras from the Rajmahal Basin, eastern India, and their chronological significance. Historical Biology 32 (2): 143–159. DOI.: 10.1080/08912963.2018.1529763. DOI: https://doi.org/10.1080/08912963.2018.1529763

Murthy S, Mendhe VA, Kavali PS & Singh VP 2020a. Evidence of recurrent wildfire from the Permian coal deposits of India: Petrographic, scanning electron microscope and palynological analysis of fossil charcoal. Palaeoworld 29: 715−728. DOI: https://doi.org/10.1016/j.palwor.2020.03.004

Murthy S, Saxena A & Chakraborti B 2020b. Palynostratigraphy of Permian and Mesozoic subsurface sediments of Brahmani Coalfield, Rajmahal Basin, India. Palaeontological Society of India 65(2): 149–161.

Murthy S, Mendhe VA, Uhl D, Mathews RP, Mishra VK & Gautam S 2021. Palaeobotanical and biomarker evidence for Early Permian (Artinskian) wildfire in the Rajmahal Basin, India. Journal of Palaeogeography 10: 5. DOI.: 10.1186/s42501–021–00084–2. DOI: https://doi.org/10.1186/s42501-021-00084-2

Murthy S, Ram–Awatar & Gautam S 2014. Palynostratigraphy of Permian succession in the Mand–Raigarh Coalfield, Chhattisgarh, India. Journal of Earth System Sciences 123: 1879–1893. DOI: https://doi.org/10.1007/s12040-014-0498-9

Murthy S, Uhl D, Jasper A, Sarate OS & Mishra DP 2022. New evidence for Palaeo–wildfire in the Early Permian (Artinskian) of Gondwana from Wardha Valley Coalfield, India. Journal of Geological Society of India 98: 395−401. DOI: https://doi.org/10.1007/s12594-022-1991-4

Nichols GJ, Cripps J, Collinson ME & Scott AC 2000. Experiments in waterlogging and sedimentology of charcoal: results and implications. Palaeogeography, Palaeoclimatology, Palaeoecology 164: 43–56. DOI: https://doi.org/10.1016/S0031-0182(00)00174-7

Pillai SSK, Mathews RP, Murthy S, Goswami S, Agarwal S, Sahoo M & Singh RK 2020. Palaeofloral investigation based on morphotaxonomy, palynomorphs, biomarkers and stable isotope from Lalmatia Coal Mine of Rajmahal Lower Gondwana Basin, Godda District, Jharkhand: An inclusive empirical study. Journal of Geological Society of India 96: 43−57. DOI: https://doi.org/10.1007/s12594-020-1503-3

Raja Rao CS 1987. Coal resources of Bihar (excluding Dhanbad District). Bulletin of Geological Survey of India, Series. A 45 (IV): 300–322.

Ram–Awatar, Mukhopadhyay A & Adhikari S 2003. Palynostratigraphy of sub surface Lower Gondwana, Pali sediments, Sohagpur Coalfield, Madhya Pradesh, India. Palaeobotanist 53: 51–59. DOI: https://doi.org/10.54991/jop.2004.208

Rao AR 1936. Winged pollen from the Jurassic of India. Proceedings of 23rd Indian Science Congress Association, Indore 34.

Rao AR 1943. Jurassic spores and sporangia from the Rajmahal Hills, Bihar. Proceedings of National Academy Sciences, India (B) 13(6): 181–197.

Sarate OS 1986. Palynological correlation of the coal seams of Pathakhera Coalfield, Madhya Pradesh, India. Geophytology 16: 239–248.

Scott AC 2000. The Pre–Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology 164: 281–329. DOI: https://doi.org/10.1016/S0031-0182(00)00192-9

Scott AC 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 11–39. DOI: https://doi.org/10.1016/j.palaeo.2009.12.012

Scott AC, Bowman BMJS, Bond WJ, Pyne SJ & Alexander ME 2014. Fire on Earth: An Introduction. Wiley Blackwell: 413 pp.

Slater BJ, McLoughlin S & Hilton J 2015. A high–latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Research 27: 1446–1473. DOI: https://doi.org/10.1016/j.gr.2014.01.004

Singh MP & Singh PK 1996. Petrographic characterization and evolution of the Permian coal deposits of the Rajmahal basin, Bihar, India. International Journal of Coal Geology 29: 93–118. DOI: https://doi.org/10.1016/0166-5162(95)00005-4

Srivastava SC & Anand–Prakash 1984. Palynological succession of the Lower Gondwana sediments in Umaria Coalfield, Madhya Pradesh, India. Palaeobotanist 32(1): 26–34. DOI: https://doi.org/10.54991/jop.1984.1360

Srivastava SC & Maheshwari HK 1974. Palynostratigraphy of the Damuda Group in the Brahmani Coalfield, Rajmahal hills, Bihar. Geophytology 4(1): 35–45.

Srivastava SC & Sarate OS 1989. Palynostratigraphy of the Lower Gondwana sediments from Shobhapur Block, Pathakhera Coalfield, Madhya Pradesh. Palaeobotanist 37: 125–133. DOI: https://doi.org/10.54991/jop.1988.1606

Tewari R, Chatterjee S, Agnihotri D & Pandita SK 2015. Glossopteris flora in the Permian Weller Formation of Allan Hills, South Victoria Land, Antarctica: Implications for palaeogeography, palaeoclimatology, and biostratigraphic correlation. Gondwana Research 28: 905–932. DOI: 10.1016/j.gr.2015.02.003. DOI: https://doi.org/10.1016/j.gr.2015.02.003

Tiwari RS, Kumar P & Tripathi A 1984. Palynodating of Dubrajpur and Intertrappean beds in subsurface strata of the north eastern Rajmahal Basin. In: Tiwari RS et al. (Editors)–Proceedings of Vth Indian Geophytological Conference, Lucknow 1983 Special publication: The Palaeobotanical Society: 207–225.

Tiwari RS & Tripathi A 1992. Marker Assemblage zones of spore and pollen species through Gondwana Palaeozoic–Mesozoic Sequence in India. Palaeobotanist 40: 194–236. DOI: https://doi.org/10.54991/jop.1991.1773

Tiwari RS & Tripathi A 1995. Palynological assemblages and absolute age relationship of Intertrappean beds in the Rajmahal Basin, India. Cretaceous Research 16: 53–72. DOI: https://doi.org/10.1006/cres.1995.1004

Traverse A 2007. Paleopalynology. 2nd edition. Topics in Geobiology, 28, XVIII + 722 pp. DOI: https://doi.org/10.1007/978-1-4020-5610-9

Tripathi A 1997. Palynostratigraphy and palynofacies analysis of subsurface Permian sediments in Talcher Coalfield, Orissa. Palaeobotanist 46: 79–88. DOI: https://doi.org/10.54991/jop.1997.1351

Tripathi A 2001. Permian, Jurassic and early Cretaceous palynofloral assemblages from subsurface sedimentary rocks in Chuperbhita Coalfield, Rajmahal Basin, India. Review of Palaeobotany and Palynology 113: 237–259. DOI: https://doi.org/10.1016/S0034-6667(00)00062-2

Tripathi A 2002. Role of pteridophytic spores in Early Cretaceous stratigraphy and demarcating the Jurassic–Cretaceous Boundary in India. In: Trivedi PN (Editor)–Advances in Pteridology. Pointer Publisher, Jaipur, Rajasthan: pp. 268–279.

Tripathi A 2004. Palynology evidences of hitherto unrecognized Jurassic sedimentation in Rajmahal Basin, India. Rìvista Italiana di Paleontologiae Stratigrafia 110: 35–42.

Tripathi A 2008. Palynochronology of Lower Cretaceous volcano sedimentary succession of the Rajmahal Formation in the Rajmahal Basin, India. Cretaceous Research 29: 913–924. DOI: https://doi.org/10.1016/j.cretres.2008.05.008

Tripathi A, Jana BN, Verma O, Singh RK & Singh AK 2013. Early Cretaceous palynomorphs, dinoflagellates and plant megafossils from the Rajmahal Basin, Jharkhand, India. Journal of Palaeontological Society of India 58: 125–134.

Tripathi A & Ray A 2006. Palynology of the Dubrajpur Formation (Early Triassic to Early Cretaceous) of the Rajmahal Basin, India. Palynology 30: 133–149. DOI: https://doi.org/10.2113/gspalynol.30.1.133

Tripathi A, Tiwari RS & Kumar P 1990. Sporae dispersae and their distributional pattern in subsurface Mesozoic sediments of Rajmahal Basin, Bihar, India. Palaeobotanist 37: 367–388. DOI: https://doi.org/10.54991/jop.1988.1631

Uhl D, Abu Hamad AMB, Kerp H & Bandel K 2007. Evidence for palaeo–wildfire in the Late Permian palaeotropics–charcoalified wood from the Um Irna Formation of Jordan. Review of Palaeobotany and Palynology 144: 221–230. DOI: https://doi.org/10.1016/j.revpalbo.2006.08.003

Uhl D & Kerp H 2003. Wildfires in the late Paleozoic of Central Europe–The Zechstein (Upper Permian) of NW–Hesse (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 199: 1–15. DOI: 10.1016/S0031–0182(03)00482–6. DOI: https://doi.org/10.1016/S0031-0182(03)00482-6

Uhl D, Lausberg S, Noll R & Stapf KRG 2004. Wildfires in the Late Paleozoic of Central Europe–an overview of the Rotliegend (Upper Carboniferous–Lower Permian) of the Saar–Nahe Basin (SW–Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 207: 23−35. DOI: 10.1016/j.palaeo.2004.01.019. DOI: https://doi.org/10.1016/j.palaeo.2004.01.019

Veevers JJ 2006. Updated Gondwana (Permian–Cretaceous) earth history of Australia. Gondwana Research 9: 231−260. DOI: https://doi.org/10.1016/j.gr.2005.11.005

Vishnu Mittre 1953. Microfossils from the Jurassic of Rajmahal Hills, Bihar. Proceedings of 40th Indian Science Congress Association. Lucknow, pt. III. 112.

Vishnu Mittre 1954. Petrified spores and pollen grains from the Jurassic of the Rajmahal Hills, Bihar. Palaeobotanist 2: 117–127. DOI: https://doi.org/10.54991/jop.1954.461

Downloads

Published

2023-12-22

How to Cite

Murthy, S., Agnihotri, D., Uhl, P. D., Jasper, P. A., & Singh, R. K. (2023). Palaeoenvironmental and stratigraphical implications of the palynoflora and macro–charcoal from the early Permian of the Chuperbhita Coalfield, Rajmahal Basin, Jharkhand, India. Journal of Palaeosciences, 72(2), 141–151. https://doi.org/10.54991/jop.2023.1865

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>